File size: 4,125 Bytes
53c14b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import streamlit as st
import joblib
import numpy as np
from predict import extract_features
import os
import tempfile
from huggingface_hub import hf_hub_download
import logging

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Page configuration
st.set_page_config(
    page_title="Healing Music Classifier",
    page_icon="🎡",
    layout="centered"
)

@st.cache_resource
def load_model():
    """Load model from Hugging Face Hub"""
    try:
        logger.info("Downloading model from Hugging Face Hub...")
        model_path = hf_hub_download(
            repo_id="404Brain-Not-Found-yeah/healing-music-classifier",
            filename="models/model.joblib"
        )
        scaler_path = hf_hub_download(
            repo_id="404Brain-Not-Found-yeah/healing-music-classifier",
            filename="models/scaler.joblib"
        )
        
        logger.info("Loading model and scaler...")
        return joblib.load(model_path), joblib.load(scaler_path)
    except Exception as e:
        logger.error(f"Error loading model: {str(e)}")
        return None, None

def main():
    st.title("🎡 Healing Music Classifier")
    st.write("""
    Upload your music file, and AI will analyze its healing potential!
    Supports mp3, wav formats.
    """)

    # Add file upload component
    uploaded_file = st.file_uploader("Choose an audio file...", type=['mp3', 'wav'])

    if uploaded_file is not None:
        # Create progress bar
        progress_bar = st.progress(0)
        status_text = st.empty()

        try:
            # Create temporary file
            with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file:
                # Write uploaded file content
                tmp_file.write(uploaded_file.getvalue())
                tmp_file_path = tmp_file.name

            # Update status
            status_text.text("Analyzing music...")
            progress_bar.progress(30)

            # Load model
            model, scaler = load_model()
            if model is None or scaler is None:
                st.error("Model loading failed. Please try again later.")
                return

            progress_bar.progress(50)

            # Extract features
            features = extract_features(tmp_file_path)
            if features is None:
                st.error("Failed to extract audio features. Please ensure the file is a valid audio file.")
                return

            progress_bar.progress(70)

            # Predict
            scaled_features = scaler.transform([features])
            healing_probability = model.predict_proba(scaled_features)[0][1]
            progress_bar.progress(90)

            # Display results
            st.subheader("Analysis Results")

            # Create visualization progress bar
            healing_percentage = healing_probability * 100
            st.progress(healing_probability)

            # Display percentage
            st.write(f"Healing Index: {healing_percentage:.1f}%")

            # Provide explanation
            if healing_percentage >= 75:
                st.success("This music has strong healing properties! 🌟")
            elif healing_percentage >= 50:
                st.info("This music has moderate healing effects. ✨")
            else:
                st.warning("This music has limited healing potential. 🎡")

        except Exception as e:
            st.error(f"An unexpected error occurred: {str(e)}")
            logger.exception("Unexpected error")

        finally:
            # Clean up temporary file
            try:
                if 'tmp_file_path' in locals() and os.path.exists(tmp_file_path):
                    os.unlink(tmp_file_path)
            except Exception as e:
                logger.error(f"Failed to clean up temporary file: {str(e)}")

            # Complete progress bar
            progress_bar.progress(100)
            status_text.text("Analysis complete!")

if __name__ == "__main__":
    main()