import streamlit as st import joblib import numpy as np from predict import extract_features import os import tempfile from huggingface_hub import hf_hub_download import logging # Set up logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) # Page configuration st.set_page_config( page_title="Healing Music Classifier", page_icon="🎵", layout="centered" ) @st.cache_resource def load_model(): """Load model from Hugging Face Hub""" try: logger.info("Downloading model from Hugging Face Hub...") model_path = hf_hub_download( repo_id="404Brain-Not-Found-yeah/healing-music-classifier", filename="models/model.joblib" ) scaler_path = hf_hub_download( repo_id="404Brain-Not-Found-yeah/healing-music-classifier", filename="models/scaler.joblib" ) logger.info("Loading model and scaler...") return joblib.load(model_path), joblib.load(scaler_path) except Exception as e: logger.error(f"Error loading model: {str(e)}") return None, None def main(): st.title("🎵 Healing Music Classifier") st.write(""" Upload your music file, and AI will analyze its healing potential! Supports mp3, wav formats. """) # Add file upload component uploaded_file = st.file_uploader("Choose an audio file...", type=['mp3', 'wav']) if uploaded_file is not None: # Create progress bar progress_bar = st.progress(0) status_text = st.empty() try: # Create temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file: # Write uploaded file content tmp_file.write(uploaded_file.getvalue()) tmp_file_path = tmp_file.name # Update status status_text.text("Analyzing music...") progress_bar.progress(30) # Load model model, scaler = load_model() if model is None or scaler is None: st.error("Model loading failed. Please try again later.") return progress_bar.progress(50) # Extract features features = extract_features(tmp_file_path) if features is None: st.error("Failed to extract audio features. Please ensure the file is a valid audio file.") return progress_bar.progress(70) # Predict scaled_features = scaler.transform([features]) healing_probability = model.predict_proba(scaled_features)[0][1] progress_bar.progress(90) # Display results st.subheader("Analysis Results") # Create visualization progress bar healing_percentage = healing_probability * 100 st.progress(healing_probability) # Display percentage st.write(f"Healing Index: {healing_percentage:.1f}%") # Provide explanation if healing_percentage >= 75: st.success("This music has strong healing properties! 🌟") elif healing_percentage >= 50: st.info("This music has moderate healing effects. ✨") else: st.warning("This music has limited healing potential. 🎵") except Exception as e: st.error(f"An unexpected error occurred: {str(e)}") logger.exception("Unexpected error") finally: # Clean up temporary file try: if 'tmp_file_path' in locals() and os.path.exists(tmp_file_path): os.unlink(tmp_file_path) except Exception as e: logger.error(f"Failed to clean up temporary file: {str(e)}") # Complete progress bar progress_bar.progress(100) status_text.text("Analysis complete!") if __name__ == "__main__": main()