import streamlit as st import numpy as np import pandas as pd import joblib from predict import extract_features import os import tempfile from huggingface_hub import hf_hub_download, list_repo_files import logging import traceback import sklearn import pkg_resources # 版本检查 required_versions = { 'numpy': '1.23.5', 'scipy': '1.10.1', 'scikit-learn': '1.2.2' } def check_versions(): """检查包版本是否符合要求""" for package, required_version in required_versions.items(): try: installed_version = pkg_resources.get_distribution(package).version if installed_version != required_version: logger.warning(f"Warning: {package} version mismatch. Required: {required_version}, Installed: {installed_version}") return False except pkg_resources.DistributionNotFound: logger.error(f"Error: {package} not found!") return False return True # Set up logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) # Page configuration st.set_page_config( page_title="Healing Music Classifier", page_icon="🎵", layout="centered" ) @st.cache_resource def load_model(): """Load model from Hugging Face Hub""" try: # 检查版本 if not check_versions(): logger.error("Package version requirements not met") return None, None # 创建临时目录 os.makedirs("temp_models", exist_ok=True) # 下载模型文件 try: model_path = hf_hub_download( repo_id="404Brain-Not-Found-yeah/healing-music-classifier", filename="models/model.joblib", local_dir="temp_models" ) scaler_path = hf_hub_download( repo_id="404Brain-Not-Found-yeah/healing-music-classifier", filename="models/scaler.joblib", local_dir="temp_models" ) except Exception as e: logger.error(f"Error downloading model files: {str(e)}") return None, None # 加载模型文件 try: if not os.path.exists(model_path) or not os.path.exists(scaler_path): logger.error("Model files not found") return None, None # 尝试使用不同的pickle协议加载 try: model = joblib.load(model_path) scaler = joblib.load(scaler_path) except Exception as load_error: logger.warning(f"Standard loading failed: {str(load_error)}") # 尝试使用兼容模式加载 import pickle with open(model_path, 'rb') as f: model = pickle.load(f, encoding='latin1') with open(scaler_path, 'rb') as f: scaler = pickle.load(f, encoding='latin1') return model, scaler except Exception as e: logger.error(f"Error loading model/scaler files: {str(e)}") return None, None except Exception as e: logger.error(f"Unexpected error in load_model: {str(e)}") return None, None def main(): st.title("🎵 Healing Music Classifier") st.write(""" Upload your music file, and AI will analyze its healing potential! Supports mp3, wav formats. """) # Add file upload component uploaded_file = st.file_uploader("Choose an audio file...", type=['mp3', 'wav']) if uploaded_file is not None: # Create progress bar progress_bar = st.progress(0) status_text = st.empty() try: # Create temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file: tmp_file.write(uploaded_file.getvalue()) tmp_file_path = tmp_file.name # Update status status_text.text("Analyzing music...") progress_bar.progress(30) # Load model model, scaler = load_model() if model is None or scaler is None: st.error("Model loading failed. Please try again later.") return progress_bar.progress(50) # Extract features features = extract_features(tmp_file_path) if features is None: st.error("Failed to extract audio features. Please ensure the file is a valid audio file.") return progress_bar.progress(70) # Predict try: scaled_features = scaler.transform([features]) healing_probability = model.predict_proba(scaled_features)[0][1] progress_bar.progress(90) except Exception as e: logger.error(f"Error during prediction: {str(e)}") st.error("Error during prediction. Please try again.") return # Display results st.subheader("Analysis Results") # Create visualization progress bar healing_percentage = healing_probability * 100 st.progress(healing_probability) # Display percentage st.write(f"Healing Index: {healing_percentage:.1f}%") # Provide explanation if healing_percentage >= 75: st.success("This music has strong healing properties! 🌟") elif healing_percentage >= 50: st.info("This music has moderate healing effects. ✨") else: st.warning("This music has limited healing potential. 🎵") except Exception as e: st.error("An unexpected error occurred. Please try again.") logger.exception("Unexpected error") finally: # Clean up temporary file try: if 'tmp_file_path' in locals() and os.path.exists(tmp_file_path): os.unlink(tmp_file_path) except Exception as e: logger.error(f"Failed to clean up temporary file: {str(e)}") # Complete progress bar progress_bar.progress(100) status_text.text("Analysis complete!") if __name__ == "__main__": main()