|
import gradio as gr |
|
import os |
|
from predict import predict_healing_music |
|
import train_model |
|
import logging |
|
import tempfile |
|
import time |
|
import shutil |
|
import socket |
|
import joblib |
|
|
|
|
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' |
|
) |
|
logger = logging.getLogger(__name__) |
|
|
|
def find_free_port(start_port=7860, max_port=7960): |
|
"""Find a free port in the given range.""" |
|
for port in range(start_port, max_port + 1): |
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: |
|
try: |
|
s.bind(('', port)) |
|
return port |
|
except OSError: |
|
continue |
|
return None |
|
|
|
|
|
model_dir = os.path.join(os.path.dirname(__file__), "models") |
|
os.makedirs(model_dir, exist_ok=True) |
|
|
|
|
|
model_path = os.path.join(model_dir, "model.joblib") |
|
scaler_path = os.path.join(model_dir, "scaler.joblib") |
|
|
|
|
|
if not os.path.exists(model_path) or not os.path.exists(scaler_path): |
|
print('First run: Training the model...') |
|
try: |
|
train_model.train_and_evaluate_model() |
|
print('Model training completed!') |
|
except Exception as e: |
|
print(f'Model training failed: {str(e)}') |
|
raise e |
|
|
|
def process_audio(audio_path): |
|
""" |
|
Process and analyze the audio file |
|
""" |
|
if audio_path is None: |
|
return None, None, None, "Please upload an audio file" |
|
|
|
model_dir = os.path.join(os.path.dirname(__file__), "models") |
|
model_path = os.path.join(model_dir, "model.joblib") |
|
scaler_path = os.path.join(model_dir, "scaler.joblib") |
|
|
|
try: |
|
|
|
model = joblib.load(model_path) |
|
scaler = joblib.load(scaler_path) |
|
|
|
tmp_file = None |
|
try: |
|
|
|
suffix = os.path.splitext(audio_path)[1] |
|
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=suffix) |
|
shutil.copy2(audio_path, tmp_file.name) |
|
|
|
|
|
healing_probability = predict_healing_music(tmp_file.name) |
|
|
|
if healing_probability is not None: |
|
|
|
healing_percentage = healing_probability * 100 |
|
|
|
|
|
if healing_percentage >= 75: |
|
description = "This music has strong healing properties! ✨" |
|
color = "#15803d" |
|
elif healing_percentage >= 50: |
|
description = "This music has moderate healing effects. 🌟" |
|
color = "#0369a1" |
|
else: |
|
description = "This music has limited healing potential. 🎵" |
|
color = "#b91c1c" |
|
|
|
return f"{healing_percentage:.1f}%", f'<div style="background-color: {color}; color: white; padding: 1rem; border-radius: 8px; text-align: center;">{description}</div>', None, None |
|
else: |
|
return "Error", "Error analyzing file. Please ensure it's a valid MP3 or WAV file.", None, None |
|
|
|
except Exception as e: |
|
logger.error(f"Error during analysis: {str(e)}") |
|
return "Error", f"An unexpected error occurred: {str(e)}", None, None |
|
|
|
finally: |
|
|
|
if tmp_file is not None: |
|
try: |
|
tmp_file.close() |
|
os.unlink(tmp_file.name) |
|
except Exception as e: |
|
logger.error(f"Failed to clean up temporary file: {str(e)}") |
|
|
|
except Exception as e: |
|
logger.error(f"Error during model loading: {str(e)}") |
|
return "Error", f"An unexpected error occurred: {str(e)}", None, None |
|
|
|
def analyze_audio(audio): |
|
"""Analyze the audio file""" |
|
try: |
|
if audio is None: |
|
return [ |
|
gr.update(visible=False), |
|
gr.update(visible=False), |
|
"", |
|
"" |
|
] |
|
|
|
|
|
yield [ |
|
gr.update(visible=False), |
|
gr.update(visible=True), |
|
"", |
|
"" |
|
] |
|
|
|
|
|
index, desc, _, _ = process_audio(audio) |
|
desc_with_hint = f'{desc}<div style="margin-top: 1rem; color: #9ca3af; font-size: 0.9rem;">To analyze another file, please refresh the page</div>' |
|
|
|
|
|
yield [ |
|
gr.update(visible=True), |
|
gr.update(visible=False), |
|
index, |
|
desc_with_hint |
|
] |
|
|
|
except Exception as e: |
|
logger.error(f"Error in analyze_audio: {str(e)}") |
|
yield [ |
|
gr.update(visible=True), |
|
gr.update(visible=False), |
|
"Error", |
|
f"An error occurred: {str(e)}" |
|
] |
|
|
|
|
|
custom_css = """ |
|
.gradio-container { |
|
font-family: 'Inter', -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, sans-serif; |
|
max-width: 800px !important; |
|
margin: auto; |
|
padding: 0 1rem; |
|
background-color: #0f1117; |
|
} |
|
.container { |
|
max-width: 700px; |
|
margin: 0 auto; |
|
padding-top: 2rem; |
|
} |
|
.header { |
|
text-align: center; |
|
margin-bottom: 1.5rem; |
|
width: 100%; |
|
display: flex; |
|
justify-content: center; |
|
align-items: center; |
|
} |
|
.title { |
|
font-size: 2.8rem !important; |
|
font-weight: 800 !important; |
|
color: #ffffff !important; |
|
margin: 0 !important; |
|
line-height: 1.2 !important; |
|
text-align: center !important; |
|
letter-spacing: 0.05em !important; |
|
} |
|
.subtitle { |
|
font-size: 1.4rem !important; |
|
text-align: center; |
|
color: #ffffff !important; |
|
margin-top: 1rem !important; |
|
max-width: 800px; |
|
margin-left: auto; |
|
margin-right: auto; |
|
white-space: nowrap !important; |
|
font-weight: 500 !important; |
|
letter-spacing: 0.02em !important; |
|
} |
|
.upload-box { |
|
background-color: #1f2937; |
|
border-radius: 12px; |
|
padding: 2rem; |
|
margin-bottom: 1rem; |
|
border: 2px dashed #6b7280; |
|
transition: all 0.3s ease; |
|
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); |
|
} |
|
.upload-area { |
|
display: flex; |
|
flex-direction: column; |
|
align-items: center; |
|
justify-content: center; |
|
gap: 1rem; |
|
padding: 1.5rem 0; |
|
} |
|
.icon-text-container { |
|
color: #ffffff; |
|
font-size: 1.3rem !important; |
|
font-weight: 600 !important; |
|
letter-spacing: 0.02em !important; |
|
} |
|
.upload-hint { |
|
color: #ffffff !important; |
|
font-size: 1rem !important; |
|
margin-top: 0.5rem !important; |
|
font-style: italic !important; |
|
font-weight: 500 !important; |
|
} |
|
.analyzing-status { |
|
margin: 1rem 0; |
|
background-color: #1f2937; |
|
border-radius: 12px; |
|
padding: 1.5rem; |
|
text-align: center; |
|
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); |
|
} |
|
.analyzing-text { |
|
color: #ffffff !important; |
|
font-size: 1.4rem !important; |
|
font-weight: 600 !important; |
|
margin: 0 !important; |
|
letter-spacing: 0.02em !important; |
|
} |
|
.results-container { |
|
background-color: #1f2937; |
|
border-radius: 12px; |
|
padding: 1.5rem; |
|
margin-top: 1rem; |
|
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); |
|
} |
|
.result-title { |
|
color: #ffffff !important; |
|
font-size: 1.6rem !important; |
|
font-weight: 700 !important; |
|
margin-bottom: 1rem !important; |
|
letter-spacing: 0.02em !important; |
|
} |
|
.healing-index { |
|
font-size: 3rem !important; |
|
font-weight: 800 !important; |
|
text-align: center; |
|
color: #ffffff !important; |
|
margin: 1rem 0 !important; |
|
letter-spacing: 0.05em !important; |
|
} |
|
.result-text { |
|
color: #ffffff !important; |
|
font-size: 1.2rem !important; |
|
font-weight: 600 !important; |
|
letter-spacing: 0.02em !important; |
|
line-height: 1.5 !important; |
|
padding: 1rem !important; |
|
border-radius: 8px !important; |
|
} |
|
""" |
|
|
|
|
|
with gr.Blocks( |
|
title="Healing Music Classifier", |
|
css=custom_css, |
|
theme=gr.themes.Default() |
|
) as demo: |
|
with gr.Column(elem_classes="container"): |
|
with gr.Row(elem_classes="header"): |
|
gr.Markdown("🎵 Healing Music Classifier", elem_classes="title") |
|
|
|
gr.Markdown( |
|
"Upload your music file, and our model will analyze its healing potential!", |
|
elem_classes="subtitle" |
|
) |
|
|
|
with gr.Column(elem_classes="upload-box"): |
|
with gr.Column(elem_classes="upload-area"): |
|
gr.Markdown("☁️ Drop your audio file here", elem_classes="icon-text-container") |
|
audio_input = gr.Audio( |
|
label="Audio Input", |
|
sources=["upload"], |
|
type="filepath", |
|
elem_classes="audio-input", |
|
interactive=True, |
|
label_visible=False |
|
) |
|
gr.Markdown("Limit 200MB per file • MP3, WAV", elem_classes="upload-hint") |
|
|
|
with gr.Column(elem_classes="analyzing-status", visible=False) as analyzing: |
|
gr.Markdown( |
|
"""<div style="display: flex; align-items: center; justify-content: center; gap: 0.5rem;"> |
|
<div class="loading-spinner"></div> |
|
<span style="color: #60a5fa;">Analyzing your music...</span> |
|
</div>""", |
|
elem_classes="analyzing-text" |
|
) |
|
|
|
with gr.Column(elem_classes="results-container", visible=False) as results: |
|
gr.Markdown("Analysis Results", elem_classes="result-title") |
|
healing_index = gr.Markdown("", elem_classes="healing-index") |
|
result_text = gr.Markdown("", elem_classes="result-text") |
|
|
|
|
|
audio_input.upload( |
|
fn=analyze_audio, |
|
inputs=[audio_input], |
|
outputs=[ |
|
results, |
|
analyzing, |
|
healing_index, |
|
result_text |
|
], |
|
queue=True |
|
) |
|
|
|
|
|
demo.queue() |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|