|
import joblib |
|
from train_model import extract_features |
|
import numpy as np |
|
import os |
|
import logging |
|
import soundfile as sf |
|
import librosa |
|
import traceback |
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
model_dir = os.path.join(os.path.dirname(__file__), "models") |
|
MODEL_PATH = os.path.join(model_dir, "model.joblib") |
|
SCALER_PATH = os.path.join(model_dir, "scaler.joblib") |
|
|
|
def verify_audio_file(file_path): |
|
"""Verify if the audio file is valid and can be processed.""" |
|
try: |
|
print(f"[DEBUG] Starting audio file verification for: {file_path}") |
|
logger.debug(f"Starting audio file verification for: {file_path}") |
|
|
|
|
|
if not os.path.exists(file_path): |
|
print(f"[ERROR] File not found: {file_path}") |
|
logger.error(f"File not found: {file_path}") |
|
return False |
|
|
|
file_size = os.path.getsize(file_path) |
|
print(f"[DEBUG] File size: {file_size} bytes") |
|
logger.debug(f"File size: {file_size} bytes") |
|
if file_size == 0: |
|
print("[ERROR] File is empty") |
|
logger.error("File is empty") |
|
return False |
|
|
|
|
|
try: |
|
print("[DEBUG] Attempting to read with soundfile...") |
|
logger.debug("Attempting to read with soundfile...") |
|
with sf.SoundFile(file_path) as audio_file: |
|
print(f"[DEBUG] SoundFile success - Sample rate: {audio_file.samplerate}Hz, " |
|
f"Channels: {audio_file.channels}, Frames: {audio_file.frames}") |
|
logger.debug(f"SoundFile success - Sample rate: {audio_file.samplerate}Hz, " |
|
f"Channels: {audio_file.channels}, Frames: {audio_file.frames}") |
|
if audio_file.frames == 0: |
|
print("[ERROR] Audio file has no frames") |
|
logger.error("Audio file has no frames") |
|
return False |
|
except Exception as e: |
|
print(f"[WARNING] SoundFile read failed: {str(e)}") |
|
logger.warning(f"SoundFile read failed with error: {str(e)}") |
|
logger.debug(f"Full traceback: {traceback.format_exc()}") |
|
|
|
|
|
|
|
try: |
|
print("[DEBUG] Attempting to read with librosa...") |
|
logger.debug("Attempting to read with librosa...") |
|
y, sr = librosa.load(file_path, duration=1, sr=None) |
|
print(f"[DEBUG] Librosa success - Sample rate: {sr}Hz, Length: {len(y)} samples") |
|
logger.debug(f"Librosa success - Sample rate: {sr}Hz, Length: {len(y)} samples") |
|
if len(y) == 0: |
|
print("[ERROR] Librosa loaded empty audio data") |
|
logger.error("Librosa loaded empty audio data") |
|
return False |
|
return True |
|
except Exception as e: |
|
print(f"[ERROR] Librosa read failed: {str(e)}") |
|
logger.error(f"Librosa read failed with error: {str(e)}") |
|
logger.debug(f"Full traceback: {traceback.format_exc()}") |
|
return False |
|
|
|
except Exception as e: |
|
print(f"[ERROR] Error in verify_audio_file: {str(e)}") |
|
logger.error(f"Error in verify_audio_file: {str(e)}") |
|
logger.debug(f"Full traceback: {traceback.format_exc()}") |
|
return False |
|
|
|
def predict_healing_music(audio_path): |
|
""" |
|
Predict whether a music file is healing or not. |
|
Returns: probability of being healing music (0-1) |
|
""" |
|
try: |
|
|
|
print(f"[DEBUG] Starting prediction process for: {audio_path}") |
|
logger.info(f"Starting prediction process for: {audio_path}") |
|
if not verify_audio_file(audio_path): |
|
print("[ERROR] Audio file verification failed") |
|
logger.error("Audio file verification failed") |
|
return None |
|
|
|
|
|
try: |
|
print("[DEBUG] Loading model and scaler...") |
|
logger.info("Loading model and scaler...") |
|
if not os.path.exists(MODEL_PATH) or not os.path.exists(SCALER_PATH): |
|
print("[ERROR] Model or scaler file not found") |
|
logger.error("Model or scaler file not found") |
|
return None |
|
|
|
model = joblib.load(MODEL_PATH) |
|
scaler = joblib.load(SCALER_PATH) |
|
print("[DEBUG] Model and scaler loaded successfully") |
|
logger.info("Model and scaler loaded successfully") |
|
except Exception as e: |
|
print(f"[ERROR] Error loading model or scaler: {str(e)}") |
|
logger.error(f"Error loading model or scaler: {str(e)}") |
|
return None |
|
|
|
|
|
try: |
|
print("[DEBUG] Starting feature extraction...") |
|
logger.info("Starting feature extraction...") |
|
features = extract_features(audio_path) |
|
if features is None: |
|
print("[ERROR] Feature extraction returned None") |
|
logger.error("Feature extraction returned None") |
|
return None |
|
|
|
|
|
expected_features = 38 |
|
if len(features) != expected_features: |
|
print(f"[ERROR] Incorrect number of features. Expected {expected_features}, got {len(features)}") |
|
logger.error(f"Incorrect number of features. Expected {expected_features}, got {len(features)}") |
|
return None |
|
|
|
print(f"[DEBUG] Successfully extracted {len(features)} features") |
|
logger.info(f"Successfully extracted {len(features)} features") |
|
logger.debug(f"Feature values: {features}") |
|
except Exception as e: |
|
print(f"[ERROR] Error during feature extraction: {str(e)}") |
|
logger.error(f"Error during feature extraction: {str(e)}") |
|
logger.debug(f"Full traceback: {traceback.format_exc()}") |
|
return None |
|
|
|
|
|
try: |
|
print("[DEBUG] Scaling features...") |
|
logger.info("Scaling features...") |
|
features_scaled = scaler.transform(features.reshape(1, -1)) |
|
print("[DEBUG] Features scaled successfully") |
|
logger.info("Features scaled successfully") |
|
except Exception as e: |
|
print(f"[ERROR] Error scaling features: {str(e)}") |
|
logger.error(f"Error scaling features: {str(e)}") |
|
return None |
|
|
|
|
|
try: |
|
print("[DEBUG] Making prediction...") |
|
logger.info("Making prediction...") |
|
probability = model.predict_proba(features_scaled)[0][1] |
|
print(f"[DEBUG] Prediction successful: {probability:.2f}") |
|
logger.info(f"Prediction successful: {probability:.2f}") |
|
return probability |
|
except Exception as e: |
|
print(f"[ERROR] Error making prediction: {str(e)}") |
|
logger.error(f"Error making prediction: {str(e)}") |
|
return None |
|
|
|
except Exception as e: |
|
print(f"[ERROR] Unexpected error during prediction: {str(e)}") |
|
logger.error(f"Unexpected error during prediction: {str(e)}") |
|
return None |
|
|
|
|