|
import streamlit as st |
|
import torch |
|
from transformers import BertTokenizer, BertForSequenceClassification |
|
|
|
from tqdm import tqdm |
|
|
|
import time |
|
|
|
|
|
label_dict = {"Urgency": 0, "Not Dark Pattern": 1, "Scarcity": 2, "Misdirection": 3, "Social Proof": 4, "Obstruction": 5, "Sneaking": 6, "Forced Action": 7} |
|
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=len(label_dict)) |
|
|
|
|
|
fine_tuned_model_path = "models/finetuned_BERT_5k_epoch_5.model" |
|
model.load_state_dict(torch.load(fine_tuned_model_path, map_location=torch.device('cpu'))) |
|
|
|
|
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True) |
|
|
|
|
|
def get_dark_pattern_name(label): |
|
reverse_label_dict = {v: k for k, v in label_dict.items()} |
|
return reverse_label_dict[label] |
|
|
|
def find_dark_pattern(text_predict): |
|
encoded_text = tokenizer.encode_plus( |
|
text_predict, |
|
add_special_tokens=True, |
|
return_attention_mask=True, |
|
pad_to_max_length=True, |
|
max_length=256, |
|
return_tensors='pt' |
|
) |
|
|
|
|
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
inputs = { |
|
'input_ids': encoded_text['input_ids'], |
|
'attention_mask': encoded_text['attention_mask'] |
|
} |
|
outputs = model(**inputs) |
|
|
|
predictions = outputs.logits |
|
|
|
|
|
probabilities = torch.nn.functional.softmax(predictions, dim=1) |
|
predicted_label = torch.argmax(probabilities, dim=1).item() |
|
|
|
return get_dark_pattern_name(predicted_label) |
|
|
|
|
|
def main(): |
|
|
|
|
|
st.page_link("app.py", label="Home", icon="🏠") |
|
st.page_link("pages/page_1.py", label="Training Metrics", icon="1️⃣") |
|
|
|
st.page_link("https://github.com/4darsh-Dev/CogniGaurd", label="GitHub", icon="🌎") |
|
|
|
st.title("Dark Pattern Detector") |
|
|
|
|
|
st.write("Welcome to Dark Pattern Detector powered by CogniGuard") |
|
|
|
|
|
st.write("#### Built with Fine-Tuned BERT and Hugging Face Transformers") |
|
|
|
|
|
|
|
text_to_predict = st.text_input("Enter the text to find Dark Pattern") |
|
|
|
if st.button("Predict"): |
|
|
|
start_time = time.time() |
|
|
|
|
|
st.write("Predicting Dark Pattern...") |
|
|
|
|
|
progress_bar = st.progress(0) |
|
|
|
for i in tqdm(range(10), desc="Predicting", unit="prediction"): |
|
predicted_darkp = find_dark_pattern(text_to_predict) |
|
progress_bar.progress((i + 1) * 10) |
|
time.sleep(0.5) |
|
|
|
|
|
end_time = time.time() |
|
|
|
|
|
total_time = end_time - start_time |
|
|
|
|
|
st.write(f"Result: {predicted_darkp}") |
|
st.write(f"Total Time Taken: {total_time:.2f} seconds") |
|
|
|
|
|
|
|
|
|
|
|
st.markdown('<p style="text-align:center;">Made with ❤️ by <a href="https://www.adarshmaurya.onionreads.com">Adarsh Maurya</a></p>', unsafe_allow_html=True) |
|
|
|
|
|
with open("assets/counter.txt", "r") as f: |
|
pVisit = int(f.read()) |
|
|
|
pVisit += 1 |
|
|
|
with open("assets/counter.txt", "w") as f: |
|
f.write(str(pVisit)) |
|
|
|
|
|
|
|
st.markdown(f'<p style="text-align:center;">Page Visits: {pVisit}</p>', unsafe_allow_html=True) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|