|
import gradio as gr |
|
import time |
|
import torch |
|
from transformers import BertTokenizer, BertForSequenceClassification |
|
|
|
label_dict = {"Urgency": 0, "Not Dark Pattern": 1, "Scarcity": 2, "Misdirection": 3, "Social Proof": 4, "Obstruction": 5, "Sneaking": 6, "Forced Action": 7} |
|
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=len(label_dict)) |
|
fine_tuned_model_path = "models/finetuned_BERT_5k_epoch_5.model" |
|
model.load_state_dict(torch.load(fine_tuned_model_path, map_location=torch.device('cpu'))) |
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True) |
|
|
|
def get_dark_pattern_name(label): |
|
reverse_label_dict = {v: k for k, v in label_dict.items()} |
|
return reverse_label_dict[label] |
|
|
|
def find_dark_pattern(text_predict): |
|
encoded_text = tokenizer.encode_plus( |
|
text_predict, |
|
add_special_tokens=True, |
|
return_attention_mask=True, |
|
pad_to_max_length=True, |
|
max_length=256, |
|
return_tensors='pt' |
|
) |
|
|
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
inputs = { |
|
'input_ids': encoded_text['input_ids'], |
|
'attention_mask': encoded_text['attention_mask'] |
|
} |
|
outputs = model(**inputs) |
|
|
|
predictions = outputs.logits |
|
|
|
probabilities = torch.nn.functional.softmax(predictions, dim=1) |
|
predicted_label = torch.argmax(probabilities, dim=1).item() |
|
|
|
return get_dark_pattern_name(predicted_label) |
|
|
|
def predict(text_to_predict): |
|
start_time = time.time() |
|
print("Predicting Dark Pattern...") |
|
for i in range(10): |
|
predicted_darkp = find_dark_pattern(text_to_predict) |
|
time.sleep(0.5) |
|
end_time = time.time() |
|
total_time = end_time - start_time |
|
return predicted_darkp |
|
|
|
demo = gr.Interface(fn=predict, inputs="text", outputs="text") |
|
demo.launch(share=True) |
|
|
|
|
|
|