Spaces:
Sleeping
Sleeping
File size: 5,140 Bytes
c884422 dfe7961 9c97c75 5839dd5 9c97c75 5839dd5 9c97c75 5839dd5 c884422 dfe7961 9c97c75 5839dd5 4ddb082 89cfcf5 5839dd5 dfe7961 9c97c75 7339830 9c97c75 7339830 9c97c75 97131a6 9c97c75 97131a6 9c97c75 97131a6 9c97c75 97131a6 9c97c75 7339830 97131a6 9c97c75 c884422 163c830 c884422 9c97c75 c884422 9c97c75 5839dd5 9c97c75 c884422 5839dd5 c884422 5839dd5 9c97c75 c884422 9c97c75 c884422 9c97c75 c884422 9c97c75 e3e6646 9c97c75 e3e6646 9c97c75 e3e6646 9c97c75 5839dd5 7339830 9c97c75 7339830 9c97c75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import streamlit as st
from langchain.prompts import PromptTemplate
from langchain_community.llms import CTransformers
from src.helper import download_hf_embeddings, text_split, download_hf_model
from langchain_community.vectorstores import Pinecone as LangchainPinecone
import os
from dotenv import load_dotenv
from src.prompt import prompt_template
from langchain.chains import RetrievalQA
import time
from pinecone import Pinecone
from tqdm.auto import tqdm
# Load environment variables
load_dotenv()
PINECONE_API_KEY = os.getenv('PINECONE_API_KEY')
index_name = "medicure-chatbot"
# Set page configuration
st.set_page_config(page_title="Medical Chatbot", page_icon="π₯", layout="wide")
# Custom CSS for styling
st.markdown("""
<style>
.stApp {
background-color: #f0f8ff;
}
.stButton>button {
background-color: #4CAF50;
color: white;
border-radius: 20px;
border: none;
padding: 10px 20px;
transition: all 0.3s ease;
}
.stButton>button:hover {
background-color: #333;
transform: scale(1.05);
color:#fff;
}
.footer {
position: fixed;
left: 0;
bottom: 0;
width: 100%;
background-color: #f0f8ff ;
color: #333;
text-align: center;
}
.social-icons a {
color: #333;
margin: 0 10px;
font-size: 24px;
}
.social-icons a>social-icons a:hover {
color: #4CAF50;
}
</style>
""", unsafe_allow_html=True)
# Initialize session state for chat history
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
# Header
st.title("π₯ Medicure RAG Chatbot")
# Display welcome message
st.write("Welcome to Medicure Chatbot! Ask any medical question and I'll do my best to help you.")
st.write("#### Built with π€ Ctransformers, Langchain, and Pinecone VectorDB. Powered by Metal-llama2-7b-chat quantized LLM")
st.write("##### Resource Used π : The Gale Encyclopedia of Medicine ")
# Parameters section
st.sidebar.header("Parameters")
k_value = st.sidebar.slider("Number of relevant documents (k)", min_value=1, max_value=3, value=2)
max_new_tokens = st.sidebar.slider("Max new tokens", min_value=64, max_value=1024, value=512)
temperature = st.sidebar.slider("Temperature", min_value=0.1, max_value=1.0, value=0.8, step=0.1)
# Initialize the chatbot components
@st.cache_resource
def initialize_chatbot(k, max_tokens, temp):
embeddings = download_hf_embeddings()
model_path = "TheBloke/Llama-2-7B-Chat-GGML"
llm = CTransformers(model=model_path,
model_type="llama",
config={'max_new_tokens': max_tokens,
'temperature': temp})
# initialize pinecone
pc = Pinecone(api_key=PINECONE_API_KEY)
index = pc.Index(index_name)
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain_type_kwargs = {"prompt": PROMPT}
docsearch = LangchainPinecone(index, embeddings.embed_query, "text")
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=docsearch.as_retriever(search_kwargs={'k': k}),
return_source_documents=True,
chain_type_kwargs=chain_type_kwargs)
return qa
qa = initialize_chatbot(k_value, max_new_tokens, temperature)
# Chat interface
user_input = st.text_input("Ask your question:")
if st.button("Send", key="send"):
if user_input:
with st.spinner("Thinking..."):
result = qa({"query": user_input})
response = result["result"]
st.session_state.chat_history.append(("You", user_input))
st.session_state.chat_history.append(("Bot", response))
# Display chat history
st.subheader("Chat History")
for role, message in st.session_state.chat_history:
if role == "You":
st.markdown(f"**You:** {message}")
else:
st.markdown(f"**Bot:** {message}")
# Animated loading for visual appeal
def load_animation():
with st.empty():
for i in range(3):
for j in ["β
", "β
β
", "β
β
β
", "β
β
β
β
"]:
st.write(f"Loading{j}")
time.sleep(0.2)
st.write("")
# Footer with social links
st.markdown("""
<div class="footer">
<div class="social-icons">
<a href="https://github.com/4darsh-Dev" target="_blank"><i class="fab fa-github"></i></a>
<a href="https://linkedin.com/in/adarsh-maurya-dev" target="_blank"><i class="fab fa-linkedin"></i></a>
<a href="https://adarshmaurya.onionreads.com" target="_blank"><i class="fas fa-globe"></i></a>
<a href="https://www.kaggle.com/adarshm09" target="_blank"><i class="fab fa-kaggle"></i></a>
</div>
<p> <p style="text-align:center;">Made with β€οΈ by <a href="https://www.adarshmaurya.onionreads.com">Adarsh Maurya</a></p> </p>
</div>
""", unsafe_allow_html=True)
# Load Font Awesome for icons
st.markdown('<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.1/css/all.min.css">', unsafe_allow_html=True) |