52Hz commited on
Commit
01ba92d
·
1 Parent(s): 99b53b8

Delete main_test_CMFNet

Browse files
Files changed (1) hide show
  1. main_test_CMFNet +0 -91
main_test_CMFNet DELETED
@@ -1,91 +0,0 @@
1
- import argparse
2
- import cv2
3
- import glob
4
- import numpy as np
5
- from collections import OrderedDict
6
- from skimage import img_as_ubyte
7
- import os
8
- import torch
9
- import requests
10
- from PIL import Image
11
- import torchvision.transforms.functional as TF
12
- import torch.nn.functional as F
13
- from natsort import natsorted
14
- from model.CMFNet import CMFNet
15
-
16
- def main():
17
- parser = argparse.ArgumentParser(description='Demo Image Deraindrop')
18
- parser.add_argument('--input_dir', default='test/', type=str, help='Input images')
19
- parser.add_argument('--result_dir', default='result/', type=str, help='Directory for results')
20
- parser.add_argument('--weights',
21
- default='experiments/pretrained_models/deraindrop_model.pth', type=str,
22
- help='Path to weights')
23
-
24
- args = parser.parse_args()
25
-
26
- inp_dir = args.input_dir
27
- out_dir = args.result_dir
28
-
29
- os.makedirs(out_dir, exist_ok=True)
30
-
31
- files = natsorted(glob.glob(os.path.join(inp_dir, '*')))
32
-
33
- if len(files) == 0:
34
- raise Exception(f"No files found at {inp_dir}")
35
-
36
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
37
-
38
- # Load corresponding models architecture and weights
39
- model = CMFNet()
40
- model = model.to(device)
41
- model.eval()
42
- load_checkpoint(model, args.weights)
43
-
44
-
45
- mul = 16
46
- for file_ in files:
47
- img = Image.open(file_).convert('RGB')
48
- input_ = TF.to_tensor(img).unsqueeze(0).to(device)
49
-
50
- # Pad the input if not_multiple_of 8
51
- h, w = input_.shape[2], input_.shape[3]
52
- H, W = ((h + mul) // mul) * mul, ((w + mul) // mul) * mul
53
- padh = H - h if h % mul != 0 else 0
54
- padw = W - w if w % mul != 0 else 0
55
- input_ = F.pad(input_, (0, padw, 0, padh), 'reflect')
56
- with torch.no_grad():
57
- restored = model(input_)
58
-
59
- restored = torch.clamp(restored, 0, 1)
60
- restored = restored[:, :, :h, :w]
61
- restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy()
62
- restored = img_as_ubyte(restored[0])
63
-
64
- f = os.path.splitext(os.path.split(file_)[-1])[0]
65
- save_img((os.path.join(out_dir, f + '.png')), restored)
66
-
67
-
68
- def save_img(filepath, img):
69
- cv2.imwrite(filepath, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
70
-
71
-
72
- def load_checkpoint(model, weights):
73
- checkpoint = torch.load(weights, map_location=torch.device('cpu'))
74
- try:
75
- model.load_state_dict(checkpoint["state_dict"])
76
- except:
77
- state_dict = checkpoint["state_dict"]
78
- new_state_dict = OrderedDict()
79
- for k, v in state_dict.items():
80
- name = k[7:] # remove `module.`
81
- new_state_dict[name] = v
82
- model.load_state_dict(new_state_dict)
83
-
84
- def setup(args):
85
- save_dir = 'result/'
86
- folder = 'test/'
87
-
88
- return folder, save_dir
89
-
90
- if __name__ == '__main__':
91
- main()