SUNet_AWGN_denoising / training.yaml
52Hz's picture
Create training.yaml
a076ace
raw
history blame contribute delete
831 Bytes
# Training configuration
GPU: [0,1,2,3]
VERBOSE: False
SWINUNET:
IMG_SIZE: 256
PATCH_SIZE: 4
WIN_SIZE: 8
EMB_DIM: 96
DEPTH_EN: [8, 8, 8, 8]
HEAD_NUM: [8, 8, 8, 8]
MLP_RATIO: 4.0
QKV_BIAS: True
QK_SCALE: 8
DROP_RATE: 0.
ATTN_DROP_RATE: 0.
DROP_PATH_RATE: 0.1
APE: False
PATCH_NORM: True
USE_CHECKPOINTS: False
FINAL_UPSAMPLE: 'Dual up-sample'
MODEL:
MODE: 'Denoising'
# Optimization arguments.
OPTIM:
BATCH: 2
EPOCHS: 200
# EPOCH_DECAY: [10]
LR_INITIAL: 2e-4
LR_MIN: 1e-6
# BETA1: 0.9
TRAINING:
VAL_AFTER_EVERY: 1
RESUME: True
TRAIN_PS: 256
VAL_PS: 256
TRAIN_DIR: './datasets/Denoising_DIV2K/train' # path to training data
VAL_DIR: './datasets/Denoising_DIV2K/test' # path to validation data
SAVE_DIR: './checkpoints' # path to save models and images