import os import gradio as gr from PIL import Image # import torch os.system( 'wget https://github.com/FanChiMao/SUNet/releases/download/0.0/AWGN_denoising_SUNet.pth -P experiments/pretrained_models') ## def inference(img): os.system('mkdir test') #basewidth = 512 #wpercent = (basewidth / float(img.size[0])) #hsize = int((float(img.size[1]) * float(wpercent))) #img = img.resize((basewidth, hsize), Image.ANTIALIAS) img.save("test/1.png", "PNG") os.system( 'python main_test_SUNet.py --input_dir test --weights experiments/pretrained_models/AWGN_denoising_SUNet.pth') return 'result/1.png' title = "SUNet: Swin Transformer with UNet for Image Denoising" description = "Gradio demo for SUNet. SUNet has competitive performance results in terms of quantitative metrics and visual quality. See the paper and project page for detailed results below. Here, we provide a demo for AWGN image denoising. To use it, simply upload your image, or click one of the examples to load them. Reference from: https://huggingface.co/akhaliq" article = "

SUNet: Swin Transformer with UNet for Image Denoising | Github Repo

visitor badge
" examples = [['set5/baby.png'], ['set5/bird.png'],['set5/butterfly.png'],['set5/head.png'],['set5/woman.png']] gr.Interface( inference, [gr.inputs.Image(type="pil", label="Input")], gr.outputs.Image(type="file", label="Output"), title=title, description=description, article=article, allow_flagging=False, allow_screenshot=False, examples=examples ).launch(debug=True)