File size: 14,684 Bytes
069bef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1af730
98dcbd1
069bef1
 
 
 
 
16a1a13
f128547
069bef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69dde00
069bef1
0ba2f98
 
 
069bef1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import spaces
import gradio as gr
from fpdf import FPDF
from maincode import *
import os
from transformers import (
    AutoTokenizer,
    AutoModelForSeq2SeqLM,
    AutoModelForSequenceClassification
)
from huggingface_hub import InferenceClient
import ast
from datetime import datetime
import time
import gradio as gr

chat_history = []
nltk.download('punkt_tab')
token = os.environ.get('HF_TOKEN')
spc = os.environ.get('SPC')
spc2 = os.environ.get('SPC2')
dataset_mng = DatasetManager(os.environ.get('DATASET'))
tokeniz = AutoTokenizer.from_pretrained("iarfmoose/t5-base-question-generator")
model = AutoModelForSeq2SeqLM.from_pretrained("iarfmoose/t5-base-question-generator")
qabertToken = AutoTokenizer.from_pretrained("iarfmoose/bert-base-cased-qa-evaluator")
qaBertModel = AutoModelForSequenceClassification.from_pretrained("iarfmoose/bert-base-cased-qa-evaluator")

client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")

class PDF(FPDF):
    def __init__(self, text):
        super().__init__()
        self.add_page()
        self.set_font("Arial", size=12)
        self.multi_cell(0, 10, text)

    def save(self, filename):
        self.output(filename)

api_enabled = True

def process_image(image):
    """
    Convert image to text
    """
    extracter = ExtractTextFromImage(image)
    extracter.process_file()
    return extracter.get_text()

def search_books(text, author, publisher, year, language, count):
    library = Books()
    library.search_book(text, author, publisher, year, language)
    books_result = library.get_result()
    html = ""
    for bok in books_result[:count]:
        html += generate_html(bok, library.get_pdf_link(bok))
    return html

def generate_qna_html(qna_list):
    html_code = """
    <style>
        .qna-container {
            margin: 10px 0;
            border: 1px solid #ccc;
            border-radius: 5px;
            padding: 10px;
        }
        .question {
            font-weight: bold;
            color: #333;
            margin-bottom: 5px;
            display: flex;
            align-items: center;
        }
        .arrow {
            margin-right: 10px;
        }
        .answer {
            margin-left: 20px;
            font-style: italic;
            color: #555;
        }
    </style>
    <div>
    """
    old = []
    for idx, qa in enumerate(qna_list):
        if qa['question'].lower() in old:
            continue
        old.append(qa['question'])
        question = qa['question']
        answer = qa['answer']
        html_code += f"""
        <div class="qna-container">
            <div class="question">
                <span class="arrow">▶</span>
                Q{idx + 1}. {question}
            </div>
            <div class="answer">{answer}</div>
        </div>
        """
    html_code += "</div>"
    return html_code

@spaces.GPU()
def get_qna(input_passage):
    """
    Generate question from input text
    """
    calcu = calculate_questions()
    calcu.process_paragraph(paragraph=input_passage)
    count = calcu.calculate()
    count = int(count / 2)
    qg = QAGenerator(
        tokeniz,
        model,
        tokenizerEV=qabertToken,
        modelEV=qaBertModel
    )
    qlist = qg.generate(input_passage, num_questions=count, answer_style="sentences")
    return generate_qna_html(qlist), qlist

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})
    messages.append({"role": "user", "content": message})
    max_tokens = 2048
    response = ""
    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response

def search_question(search_query):
    result = dataset_mng.search(search_query, "train", "question")
    return result

def evaluate(passage, reference):
    evl = Evaluvate()
    return evl.get_result(passage, reference)

def generate_html(book_data, link):
    html_output = """
    <div style="font-family: Arial, sans-serif; line-height: 1.5;">
        <h2>{Title}</h2>
        <p><strong>Author:</strong> {Author}</p>
        <p><strong>Year:</strong> {Year}</p>
        <p><strong>Language:</strong> {Language}</p>
        <p><strong>Publisher:</strong> {Publisher}</p>
        <p><strong>Pages:</strong> {Pages}</p>
        <p><strong>Size:</strong> {Size}</p>
        <p><strong>Download Links:</strong></p>
        <ul>
            <li><a href="{link}" target="_blank">Download S1</a></li>
            <li><a href="{link2}" target="_blank">Download S2</a></li>
            <li><a href="{link3}" target="_blank">Download S3</a></li>
        </ul>
    </div>
    <hr style="border: 1px solid #ccc;">
    """.format(
        Title=book_data.get('Title', 'N/A'),
        Author=book_data.get('Author', 'N/A'),
        Year=book_data.get('Year', 'N/A'),
        Language=book_data.get('Language', 'N/A'),
        Publisher=book_data.get('Publisher', 'N/A'),
        Pages=book_data.get('Pages', 'N/A'),
        Size=book_data.get('Size', 'N/A'),
        link=link[0],
        link2=link[1],
        link3=link[2]
    )
    return html_output

def remove_question(question, qlist):
    if not isinstance(qlist, list):
        qlist = ast.literal_eval(qlist)
    for qa in qlist:
        if question.lower().strip() in qa.get("question").lower().strip():
            qlist.remove(qa)
    return generate_qna_html(qlist), qlist

def save_data_to_database(qlist, input_passage):
    if not isinstance(qlist, list):
        qlist = ast.literal_eval(qlist)
    to_save = []
    already_added = []
    for qa in qlist:
        try:
            result = dataset_mng.search(qa.get("question"), "train", "question", top_n=10)
            gr.Info(f"Question already exists in db : {qa.get('question')}")
        except:
            if qa.get("question").lower() in already_added:
                continue
            already_added.append(qa.get("question").lower())
            current_date_time = datetime.now()
            to_save.append(
                {
                        "question" : qa.get("question"),
                        "answer" : qa.get("answer"),
                        "refrence" : input_passage,
                        "data" : str(current_date_time.strftime("%d:%m:%Y %H:%M:%S")),
                        "timestamp" : int(time.time())
                }
            )
            continue
        for qas in result:
            if qas.get("match").lower() == qa.get("question").lower():
                continue
            else:
                if qa.get("question").lower() in already_added:
                    continue
                already_added.append(qa.get("question").lower())
                current_date_time = datetime.now()
                to_save.append(
                    {
                        "question" : qa.get("question"),
                        "answer" : qa.get("answer"),
                        "refrence" : input_passage,
                        "data" : str(current_date_time.strftime("%d:%m:%Y %H:%M:%S")),
                        "timestamp" : int(time.time())
                    }
                )
    if len(to_save) < 1:
        gr.Info("All question already exists in database")
    else:
        dataset_mng.add_to_dataset(to_save, token)
        gr.Info("Data saved to dataset")

def add_new_question(new_question, new_answer, qlist):
    if qlist == None:
        qlist = []
    if not isinstance(qlist, list):
        qlist = ast.literal_eval(qlist)
    qlist.append(
        {
            "question" : new_question,
            "answer" : new_answer
        }
    )
    return generate_qna_html(qlist), qlist

def edit_question_and_answer(real_question, Newquestion, Newanswer, qlist):
    if not isinstance(qlist, list):
        qlist = ast.literal_eval(qlist)
    for qa in qlist:
        if real_question.lower().strip() in qa.get("question").lower().strip():
            newqa = qa
            if Newquestion:
                newqa["question"] = Newquestion
            elif Newanswer:
                newqa["answer"] = Newanswer
            else:
                gr.Info("Nothing to update")
            qlist[qlist.index(qa)] = newqa
            break
    return generate_qna_html(qlist), qlist

with gr.Blocks() as demo:

    with gr.Tabs():

        with gr.Tab("Handwritten to Text"):
            gr.Markdown("OCR")
            image_input = gr.Image(label="Upload an Image", type="filepath")
            text_output = gr.Textbox(label="Extracted Text")
            process_button = gr.Button("Process Image")
            process_button.click(process_image, inputs=image_input, outputs=text_output)

        with gr.Tab("Search Books"):
            gr.Markdown("# Search For Books")
            text_input = gr.Textbox(label="Enter the book name (required)")
            author_input = gr.Textbox(label="Author (optional)", placeholder="Enter the author name")
            publisher_input = gr.Textbox(label="Publisher (optional)", placeholder="Enter the publisher name")
            year_input = gr.Textbox(label="Year (optional)", placeholder="Enter the publication year")
            language_input = gr.Textbox(label="Language (optional)", placeholder="Enter the language")
            result_count_slider = gr.Slider(label="Number of Results", minimum=1, maximum=25, step=1, value=5)
            pdf_links_output = gr.HTML(value="Boooks Result", label="Download Links")
            generate_pdf_button = gr.Button("Find Book")
            generate_pdf_button.click(
                search_books, 
                inputs=[text_input, author_input, publisher_input, year_input, language_input, result_count_slider], 
                outputs=pdf_links_output
            )

        with gr.Tab("Gen Q&A"):
            gr.Markdown("# Generate Question and Answer according to the paragraph")
            text_input_qna = gr.Textbox(label="Enter Paragraph")
            text_output_qna = gr.HTML(value="Q&A", label="Generated Q&A")
            generate_qna_button = gr.Button("Generate")
            text_output_qna_json = gr.Textbox(value="QNA_json", label="Generated Q&A Json", visible=False)
            generate_qna_button.click(get_qna, inputs=text_input_qna, outputs=[text_output_qna, text_output_qna_json])
            save_to_database = gr.Button("Save QNA")
            remove_question_input = gr.Textbox(label="Question To Remove")
            remove_q_button = gr.Button("Remove QNA")
            remove_q_button.click(remove_question, inputs=[remove_question_input, text_output_qna_json], outputs=[text_output_qna, text_output_qna_json])
            save_to_database.click(save_data_to_database, inputs=[text_output_qna_json, text_input_qna])
            gr.Markdown("""
                        ### To Edit the question you must have to enter the real question and here are thing how you can edit question and answer
                        - EDIT QUESTION : To edit question enter the real question first in the question to edit section, Then enter the question in the new question and then click on Edit Q&A button
                        - EDIT ANSWER : To edit answer do same thing enter the real question in the Question to edit textbox then add the new Answer in the New Answer text input and leave New Question empty and click on Edit Q&A button
                        - EDIT BOTH : To edit both thing ans and question just add real question in the question to edit and add new question in New Question and New answer in the New Answer and click on Edit Q&A to edit it.

                        ## These are the methods to edit the question and answer for the dataset
                        """)
            edit_question_real = gr.Textbox(label="Question To Edit", placeholder="Question to edit")
            with gr.Row():
                edit_question_input = gr.Textbox(label="New Question", placeholder="New Answer (Optional)")
                edit_answer_input = gr.Textbox(label="New Answer", placeholder="New Answer (Optional)")
            edit_qna_button = gr.Button("Edit Q&A")
            edit_qna_button.click(edit_question_and_answer, inputs=[edit_question_real, edit_question_input, edit_answer_input, text_output_qna_json], outputs=[text_output_qna, text_output_qna_json])
            new_question_input = gr.Textbox(label="New Question", placeholder="New question")
            new_answer = gr.Textbox(label="New Answer", placeholder="New Answer")
            button = gr.Button("Add Q&A")
            button.click(add_new_question, inputs=[new_question_input, new_answer], outputs=[text_output_qna, text_output_qna_json])

        with gr.Tab("Evaluate"):
            gr.Markdown("# Evaluate Texts")
            text_input_1 = gr.Textbox(label="Passage")
            text_input_2 = gr.Textbox(label="Reference")
            marks_input = gr.Number(label="Marks", interactive=False)
            hardness_range = gr.Slider(label="Hardness", minimum=1, maximum=10, step=1, value=5, interactive=False)
            html_output = gr.HTML(value="Evaluation text", label="Evaluation Result")
            evaluate_button = gr.Button("Evaluate")
            evaluate_button.click(evaluate, inputs=[text_input_1, text_input_2], outputs=html_output)
            def html_to_pdf(html_content):
                pdf = PDF(html_content)
                pdf.save("evaluation_output.pdf")
                return "evaluation_output.pdf"
            generate_pdf_button = gr.Button("Get PDF")
            pdf_output = gr.File(label="Download Evaluation PDF")
            generate_pdf_button.click(html_to_pdf, inputs=html_output, outputs=pdf_output)

        with gr.Tab("Search Question"):
            gr.Markdown("# Search Question")
            text_input_qna = gr.Textbox(label="Question")
            text_output_qna = gr.Textbox(value="Question And Answer result", label="Output")
            generate_qna_button = gr.Button("Find Answer")
            generate_qna_button.click(search_question, inputs=text_input_qna, outputs=text_output_qna)

        with gr.Tab("Chat"):
            gr.HTML(f"<iframe src='{spc}' width='100%' height='600'></iframe>")

        with gr.Tab("Image Generation"):
            gr.HTML(f"<iframe src='{spc2}' width='100%' height='600'></iframe>")

demo.launch()