Spaces:
Running
Running
File size: 14,684 Bytes
069bef1 d1af730 98dcbd1 069bef1 16a1a13 f128547 069bef1 69dde00 069bef1 0ba2f98 069bef1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import spaces
import gradio as gr
from fpdf import FPDF
from maincode import *
import os
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification
)
from huggingface_hub import InferenceClient
import ast
from datetime import datetime
import time
import gradio as gr
chat_history = []
nltk.download('punkt_tab')
token = os.environ.get('HF_TOKEN')
spc = os.environ.get('SPC')
spc2 = os.environ.get('SPC2')
dataset_mng = DatasetManager(os.environ.get('DATASET'))
tokeniz = AutoTokenizer.from_pretrained("iarfmoose/t5-base-question-generator")
model = AutoModelForSeq2SeqLM.from_pretrained("iarfmoose/t5-base-question-generator")
qabertToken = AutoTokenizer.from_pretrained("iarfmoose/bert-base-cased-qa-evaluator")
qaBertModel = AutoModelForSequenceClassification.from_pretrained("iarfmoose/bert-base-cased-qa-evaluator")
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
class PDF(FPDF):
def __init__(self, text):
super().__init__()
self.add_page()
self.set_font("Arial", size=12)
self.multi_cell(0, 10, text)
def save(self, filename):
self.output(filename)
api_enabled = True
def process_image(image):
"""
Convert image to text
"""
extracter = ExtractTextFromImage(image)
extracter.process_file()
return extracter.get_text()
def search_books(text, author, publisher, year, language, count):
library = Books()
library.search_book(text, author, publisher, year, language)
books_result = library.get_result()
html = ""
for bok in books_result[:count]:
html += generate_html(bok, library.get_pdf_link(bok))
return html
def generate_qna_html(qna_list):
html_code = """
<style>
.qna-container {
margin: 10px 0;
border: 1px solid #ccc;
border-radius: 5px;
padding: 10px;
}
.question {
font-weight: bold;
color: #333;
margin-bottom: 5px;
display: flex;
align-items: center;
}
.arrow {
margin-right: 10px;
}
.answer {
margin-left: 20px;
font-style: italic;
color: #555;
}
</style>
<div>
"""
old = []
for idx, qa in enumerate(qna_list):
if qa['question'].lower() in old:
continue
old.append(qa['question'])
question = qa['question']
answer = qa['answer']
html_code += f"""
<div class="qna-container">
<div class="question">
<span class="arrow">▶</span>
Q{idx + 1}. {question}
</div>
<div class="answer">{answer}</div>
</div>
"""
html_code += "</div>"
return html_code
@spaces.GPU()
def get_qna(input_passage):
"""
Generate question from input text
"""
calcu = calculate_questions()
calcu.process_paragraph(paragraph=input_passage)
count = calcu.calculate()
count = int(count / 2)
qg = QAGenerator(
tokeniz,
model,
tokenizerEV=qabertToken,
modelEV=qaBertModel
)
qlist = qg.generate(input_passage, num_questions=count, answer_style="sentences")
return generate_qna_html(qlist), qlist
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
max_tokens = 2048
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
def search_question(search_query):
result = dataset_mng.search(search_query, "train", "question")
return result
def evaluate(passage, reference):
evl = Evaluvate()
return evl.get_result(passage, reference)
def generate_html(book_data, link):
html_output = """
<div style="font-family: Arial, sans-serif; line-height: 1.5;">
<h2>{Title}</h2>
<p><strong>Author:</strong> {Author}</p>
<p><strong>Year:</strong> {Year}</p>
<p><strong>Language:</strong> {Language}</p>
<p><strong>Publisher:</strong> {Publisher}</p>
<p><strong>Pages:</strong> {Pages}</p>
<p><strong>Size:</strong> {Size}</p>
<p><strong>Download Links:</strong></p>
<ul>
<li><a href="{link}" target="_blank">Download S1</a></li>
<li><a href="{link2}" target="_blank">Download S2</a></li>
<li><a href="{link3}" target="_blank">Download S3</a></li>
</ul>
</div>
<hr style="border: 1px solid #ccc;">
""".format(
Title=book_data.get('Title', 'N/A'),
Author=book_data.get('Author', 'N/A'),
Year=book_data.get('Year', 'N/A'),
Language=book_data.get('Language', 'N/A'),
Publisher=book_data.get('Publisher', 'N/A'),
Pages=book_data.get('Pages', 'N/A'),
Size=book_data.get('Size', 'N/A'),
link=link[0],
link2=link[1],
link3=link[2]
)
return html_output
def remove_question(question, qlist):
if not isinstance(qlist, list):
qlist = ast.literal_eval(qlist)
for qa in qlist:
if question.lower().strip() in qa.get("question").lower().strip():
qlist.remove(qa)
return generate_qna_html(qlist), qlist
def save_data_to_database(qlist, input_passage):
if not isinstance(qlist, list):
qlist = ast.literal_eval(qlist)
to_save = []
already_added = []
for qa in qlist:
try:
result = dataset_mng.search(qa.get("question"), "train", "question", top_n=10)
gr.Info(f"Question already exists in db : {qa.get('question')}")
except:
if qa.get("question").lower() in already_added:
continue
already_added.append(qa.get("question").lower())
current_date_time = datetime.now()
to_save.append(
{
"question" : qa.get("question"),
"answer" : qa.get("answer"),
"refrence" : input_passage,
"data" : str(current_date_time.strftime("%d:%m:%Y %H:%M:%S")),
"timestamp" : int(time.time())
}
)
continue
for qas in result:
if qas.get("match").lower() == qa.get("question").lower():
continue
else:
if qa.get("question").lower() in already_added:
continue
already_added.append(qa.get("question").lower())
current_date_time = datetime.now()
to_save.append(
{
"question" : qa.get("question"),
"answer" : qa.get("answer"),
"refrence" : input_passage,
"data" : str(current_date_time.strftime("%d:%m:%Y %H:%M:%S")),
"timestamp" : int(time.time())
}
)
if len(to_save) < 1:
gr.Info("All question already exists in database")
else:
dataset_mng.add_to_dataset(to_save, token)
gr.Info("Data saved to dataset")
def add_new_question(new_question, new_answer, qlist):
if qlist == None:
qlist = []
if not isinstance(qlist, list):
qlist = ast.literal_eval(qlist)
qlist.append(
{
"question" : new_question,
"answer" : new_answer
}
)
return generate_qna_html(qlist), qlist
def edit_question_and_answer(real_question, Newquestion, Newanswer, qlist):
if not isinstance(qlist, list):
qlist = ast.literal_eval(qlist)
for qa in qlist:
if real_question.lower().strip() in qa.get("question").lower().strip():
newqa = qa
if Newquestion:
newqa["question"] = Newquestion
elif Newanswer:
newqa["answer"] = Newanswer
else:
gr.Info("Nothing to update")
qlist[qlist.index(qa)] = newqa
break
return generate_qna_html(qlist), qlist
with gr.Blocks() as demo:
with gr.Tabs():
with gr.Tab("Handwritten to Text"):
gr.Markdown("OCR")
image_input = gr.Image(label="Upload an Image", type="filepath")
text_output = gr.Textbox(label="Extracted Text")
process_button = gr.Button("Process Image")
process_button.click(process_image, inputs=image_input, outputs=text_output)
with gr.Tab("Search Books"):
gr.Markdown("# Search For Books")
text_input = gr.Textbox(label="Enter the book name (required)")
author_input = gr.Textbox(label="Author (optional)", placeholder="Enter the author name")
publisher_input = gr.Textbox(label="Publisher (optional)", placeholder="Enter the publisher name")
year_input = gr.Textbox(label="Year (optional)", placeholder="Enter the publication year")
language_input = gr.Textbox(label="Language (optional)", placeholder="Enter the language")
result_count_slider = gr.Slider(label="Number of Results", minimum=1, maximum=25, step=1, value=5)
pdf_links_output = gr.HTML(value="Boooks Result", label="Download Links")
generate_pdf_button = gr.Button("Find Book")
generate_pdf_button.click(
search_books,
inputs=[text_input, author_input, publisher_input, year_input, language_input, result_count_slider],
outputs=pdf_links_output
)
with gr.Tab("Gen Q&A"):
gr.Markdown("# Generate Question and Answer according to the paragraph")
text_input_qna = gr.Textbox(label="Enter Paragraph")
text_output_qna = gr.HTML(value="Q&A", label="Generated Q&A")
generate_qna_button = gr.Button("Generate")
text_output_qna_json = gr.Textbox(value="QNA_json", label="Generated Q&A Json", visible=False)
generate_qna_button.click(get_qna, inputs=text_input_qna, outputs=[text_output_qna, text_output_qna_json])
save_to_database = gr.Button("Save QNA")
remove_question_input = gr.Textbox(label="Question To Remove")
remove_q_button = gr.Button("Remove QNA")
remove_q_button.click(remove_question, inputs=[remove_question_input, text_output_qna_json], outputs=[text_output_qna, text_output_qna_json])
save_to_database.click(save_data_to_database, inputs=[text_output_qna_json, text_input_qna])
gr.Markdown("""
### To Edit the question you must have to enter the real question and here are thing how you can edit question and answer
- EDIT QUESTION : To edit question enter the real question first in the question to edit section, Then enter the question in the new question and then click on Edit Q&A button
- EDIT ANSWER : To edit answer do same thing enter the real question in the Question to edit textbox then add the new Answer in the New Answer text input and leave New Question empty and click on Edit Q&A button
- EDIT BOTH : To edit both thing ans and question just add real question in the question to edit and add new question in New Question and New answer in the New Answer and click on Edit Q&A to edit it.
## These are the methods to edit the question and answer for the dataset
""")
edit_question_real = gr.Textbox(label="Question To Edit", placeholder="Question to edit")
with gr.Row():
edit_question_input = gr.Textbox(label="New Question", placeholder="New Answer (Optional)")
edit_answer_input = gr.Textbox(label="New Answer", placeholder="New Answer (Optional)")
edit_qna_button = gr.Button("Edit Q&A")
edit_qna_button.click(edit_question_and_answer, inputs=[edit_question_real, edit_question_input, edit_answer_input, text_output_qna_json], outputs=[text_output_qna, text_output_qna_json])
new_question_input = gr.Textbox(label="New Question", placeholder="New question")
new_answer = gr.Textbox(label="New Answer", placeholder="New Answer")
button = gr.Button("Add Q&A")
button.click(add_new_question, inputs=[new_question_input, new_answer], outputs=[text_output_qna, text_output_qna_json])
with gr.Tab("Evaluate"):
gr.Markdown("# Evaluate Texts")
text_input_1 = gr.Textbox(label="Passage")
text_input_2 = gr.Textbox(label="Reference")
marks_input = gr.Number(label="Marks", interactive=False)
hardness_range = gr.Slider(label="Hardness", minimum=1, maximum=10, step=1, value=5, interactive=False)
html_output = gr.HTML(value="Evaluation text", label="Evaluation Result")
evaluate_button = gr.Button("Evaluate")
evaluate_button.click(evaluate, inputs=[text_input_1, text_input_2], outputs=html_output)
def html_to_pdf(html_content):
pdf = PDF(html_content)
pdf.save("evaluation_output.pdf")
return "evaluation_output.pdf"
generate_pdf_button = gr.Button("Get PDF")
pdf_output = gr.File(label="Download Evaluation PDF")
generate_pdf_button.click(html_to_pdf, inputs=html_output, outputs=pdf_output)
with gr.Tab("Search Question"):
gr.Markdown("# Search Question")
text_input_qna = gr.Textbox(label="Question")
text_output_qna = gr.Textbox(value="Question And Answer result", label="Output")
generate_qna_button = gr.Button("Find Answer")
generate_qna_button.click(search_question, inputs=text_input_qna, outputs=text_output_qna)
with gr.Tab("Chat"):
gr.HTML(f"<iframe src='{spc}' width='100%' height='600'></iframe>")
with gr.Tab("Image Generation"):
gr.HTML(f"<iframe src='{spc2}' width='100%' height='600'></iframe>")
demo.launch()
|