Spaces:
Build error
Build error
#import csv | |
import gradio as gr | |
import pandas as pd | |
from transformers import pipeline | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig | |
#from datasets import load_dataset | |
# Load the model and define the sentiment classifier | |
MODEL = "LiYuan/amazon-review-sentiment-analysis" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
config = AutoConfig.from_pretrained(MODEL) | |
model = AutoModelForSequenceClassification.from_pretrained(MODEL) | |
pipe = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer, config=config) | |
def classify_sentiment(sentences): | |
# Classify the sentiment of each sentence | |
predictions = pipe(sentences) | |
# Extract the predicted labels and confidence scores from the predictions | |
labels = [prediction['label'] for prediction in predictions] | |
confidences = [prediction['score'] for prediction in predictions] | |
return labels, confidences | |
def classify_sentiment_from_csv(csv_file): | |
# Read the CSV file and extract the list of sentences | |
df = pd.read_csv(csv_file.name, delimiter=",") | |
sentences = df['sentence'].tolist() | |
# Classify the sentiment of the sentences | |
labels, confidences = classify_sentiment(sentences) | |
df['confidences'] = confidences | |
df['labels'] = labels | |
return df | |
# Define the gradio app | |
def main(): | |
iface = gr.Interface(fn=classify_sentiment_from_csv, | |
inputs=gr.File(), | |
outputs=gr.Dataframe(), | |
live=True, | |
#capture_session=True, | |
allow_flagging='never') | |
iface.launch(enable_queue=False) | |
#debug: | |
# labels, confidence = classify_sentiment_from_csv("./reviews.csv") | |
# print(labels) | |
# Run the gradio app | |
if __name__ == "__main__": | |
main() | |