from newspaper import Article from newspaper import Config import nltk nltk.download('punkt') from transformers import pipeline import gradio as gr USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:78.0) Gecko/20100101 Firefox/78.0' config = Config() config.browser_user_agent = USER_AGENT config.request_timeout = 10 url = 'https://www.technologyreview.com/2021/07/09/1028140/ai-voice-actors-sound-human/' article = Article(url, config=config) article.download() article.parse() authors = ", ".join(author for author in article.authors) title = article.title date = article.publish_date text = article.text image = article.top_image videos = article.movies url = article.url print("Information about the article") print("=" * 30) print(f"Title: {title}") print(f"Author(s): {authors}") print(f"Publish date: {date}") print(f"Image: {image}") print(f"Videos: {videos}") print(f"Article link: {url}") print(f"Content: {text[:100] + '...'}") article.nlp() keywords = article.keywords keywords.sort() print(keywords) print(f"Summary: \n{article.summary}") io1 = gr.Interface.load('huggingface/sshleifer/distilbart-cnn-12-6') io2 = gr.Interface.load("huggingface/facebook/bart-large-cnn") io3 = gr.Interface.load("huggingface/google/pegasus-xsum") io4 = gr.Interface.load("huggingface/sshleifer/distilbart-cnn-6-6") # Use Parallel and Series directly from gradio iface = gr.Parallel(io1, io2, io3, io4, theme='huggingface', inputs=gr.inputs.Textbox(lines=10, label="Text")) iface.launch() def extract_article_text(url): USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:78.0) Gecko/20100101 Firefox/78.0' config = Config() config.browser_user_agent = USER_AGENT config.request_timeout = 10 article = Article(url, config=config) article.download() article.parse() text = article.text return text extractor = gr.Interface(extract_article_text, 'text', 'text') summarizer = gr.Interface.load("huggingface/facebook/bart-large-cnn") sample_url = [['https://www.technologyreview.com/2021/07/22/1029973/deepmind-alphafold-protein-folding-biology-disease-drugs-proteome/'], ['https://www.technologyreview.com/2021/07/21/1029860/disability-rights-employment-discrimination-ai-hiring/'], ['https://www.technologyreview.com/2021/07/09/1028140/ai-voice-actors-sound-human/']] desc = ''' Let Hugging Face models summarize articles for you. Note: Shorter articles generate faster summaries. This summarizer uses bart-large-cnn model by Facebook ''' # Use Parallel and Series directly from gradio iface = gr.Series(extractor, summarizer, inputs=gr.inputs.Textbox(lines=2, label='URL'), outputs='text', title='News Summarizer', theme='huggingface', description=desc, examples=sample_url) iface.launch()