import gradio as gr import torch import torch.nn as nn import torch.functional as F n_embd = 64 dropout = 0.0 block_size = 32 vocab_size = 65 n_head = 4 n_layer = 4 class Head(nn.Module): def __init__(self, head_size): super().__init__() self.key = nn.Linear(n_embd, head_size, bias=False) self.query = nn.Linear(n_embd, head_size, bias=False) self.value = nn.Linear(n_embd, head_size, bias=False) self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) self.dropout = nn.Dropout(dropout) def forward(self, x): B,T,C = x.shape k = self.key(x) q = self.query(x) wei = q @ k.transpose(-2,-1) * C**-0.5 wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) wei = F.softmax(wei, dim=-1) wei = self.dropout(wei) v = self.value(x) out = wei @ v return out class MultiHeadAttention(nn.Module): def __init__(self, num_heads, head_size): super().__init__() self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) self.proj = nn.Linear(n_embd, n_embd) self.dropout = nn.Dropout(dropout) def forward(self, x): out = torch.cat([h(x) for h in self.heads], dim=-1) out = self.dropout(self.proj(out)) return out class FeedFoward(nn.Module): def __init__(self, n_embd): super().__init__() self.net = nn.Sequential( nn.Linear(n_embd, 4 * n_embd), nn.ReLU(), nn.Linear(4 * n_embd, n_embd), nn.Dropout(dropout), ) def forward(self, x): return self.net(x) class Block(nn.Module): def __init__(self, n_embd, n_head): super().__init__() head_size = n_embd // n_head self.sa = MultiHeadAttention(n_head, head_size) self.ffwd = FeedFoward(n_embd) self.ln1 = nn.LayerNorm(n_embd) self.ln2 = nn.LayerNorm(n_embd) def forward(self, x): x = x + self.sa(self.ln1(x)) x = x + self.ffwd(self.ln2(x)) return x class BigramLanguageModel(nn.Module): def __init__(self): super().__init__() self.token_embedding_table = nn.Embedding(vocab_size, n_embd) self.position_embedding_table = nn.Embedding(block_size, n_embd) self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)]) self.ln_f = nn.LayerNorm(n_embd) self.lm_head = nn.Linear(n_embd, vocab_size) def forward(self, idx, targets=None): B, T = idx.shape tok_emb = self.token_embedding_table(idx) pos_emb = self.position_embedding_table(torch.arange(T)) x = tok_emb + pos_emb x = self.blocks(x) x = self.ln_f(x) logits = self.lm_head(x) if targets is None: loss = None else: B, T, C = logits.shape logits = logits.view(B*T, C) targets = targets.view(B*T) loss = F.cross_entropy(logits, targets) return logits, loss def generate(self, idx, max_new_tokens): for _ in range(max_new_tokens): idx_cond = idx[:, -block_size:] logits, loss = self(idx_cond) logits = logits[:, -1, :] probs = F.softmax(logits, dim=-1) idx_next = torch.multinomial(probs, num_samples=1) idx = torch.cat((idx, idx_next), dim=1) return idx chars = "\n !$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" itos = { i:ch for i,ch in enumerate(chars) } stoi = { ch:i for i,ch in enumerate(chars) } decode = lambda l: ''.join([itos[i] for i in l]) encode = lambda s: [stoi[c] for c in s] model = BigramLanguageModel() def respond( message, history: list[tuple[str, str]], ): messages = [{"role": "system", "content": "Cocaine"}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" input_txt = encode(message) context = torch.tensor(input_txt).unsqueeze(0) # response = decode(model.generate(context, max_new_tokens=2000)[0].tolist()) idx = context for _ in range(2000): idx_cond = idx[:, -block_size:] logits = model(idx_cond).logits logits = logits[:, -1, :] probs = F.softmax(logits, dim=-1) idx_next = torch.multinomial(probs, num_samples=1) idx = torch.cat((idx, idx_next), dim=1) yield decode(idx_next[0].tolist()) demo = gr.ChatInterface(respond) if __name__ == "__main__": demo.launch()