Spaces:
Sleeping
Sleeping
File size: 7,139 Bytes
5426d51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import streamlit as st
#Import library
import yaml
#load config.yml and parse into variables
with open("config.yml", "r") as ymlfile:
cfg = yaml.safe_load(ymlfile)
_BARD_API_KEY = cfg["API_KEY"]["Bard"]
main_path = cfg["LOCAL_PATH"]["main_path"]
chat_context_length = cfg["CHAT"]["chat_context_length"]
model_name = cfg["EMBEDDINGS"]["HuggingFaceEmbeddings"]["model_name"]
model_kwargs = cfg["EMBEDDINGS"]["HuggingFaceEmbeddings"]["model_kwargs"]
chunk_size = cfg["CHUNK"]["chunk_size"]
chunk_overlap = cfg["CHUNK"]["chunk_overlap"]
from langchain.vectorstores import Chroma
import streamlit as st
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
# Bard
from bardapi import Bard
from typing import Any, List, Mapping, Optional
from langchain.llms.base import LLM
from langchain.callbacks.manager import CallbackManagerForLLMRun
from streamlit_feedback import streamlit_feedback
#define Bard
class BardLLM(LLM):
@property
def _llm_type(self) -> str:
return "custom"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
response = Bard(token=_BARD_API_KEY).get_answer(prompt)['content']
return response
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {}
def load_embeddings():
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
chroma_index = Chroma(persist_directory=main_path+"/vectorstore/chroma_db", embedding_function=embeddings)
print("Successfully loading embeddings and indexing")
return chroma_index
def ask_with_memory(vector_store, question, chat_history_1=[], document_description=""):
llm=BardLLM()
retriever = vector_store.as_retriever( # now the vs can return documents
search_type='similarity', search_kwargs={'k': 3})
general_system_template = f"""
You are a professional consultant at a real estate consulting company, providing consulting services \
to customers on real estate development strategies, real estate news and real estate law.\
Your role is to communicate with customer, then interact with them about their concerns about real estates.\
Once the customer has been provided their question,\
then you obtain some documents about real estate laws or real estate news related to their question.\
Then you will examine these documents .\
You must provide the answer based on these documents which means\
using only the heading and piece of context to answer the questions at the end.\
If you don't know the answer just say that you don't know, don't try to make up an answer. \
If the question is not in the field of real estate , just answer that you do not know. \
You respond in a short, very conversational friendly style.\
Answer only in Vietnamese\
----
HEADING: ({document_description})
CONTEXT: {{context}}
----
"""
general_user_template = """Here is the next question, remember to only answer if you can from the provided context.
If the question is not relevant to real estate , just answer that you do not know, do not create your own answer.
Only respond in Vietnamese.
QUESTION:```{question}```"""
messages_1 = [
SystemMessagePromptTemplate.from_template(general_system_template),
HumanMessagePromptTemplate.from_template(general_user_template)
]
qa_prompt = ChatPromptTemplate.from_messages( messages_1 )
crc = ConversationalRetrievalChain.from_llm(llm, retriever, combine_docs_chain_kwargs={'prompt': qa_prompt})
result = crc({'question': question, 'chat_history': chat_history_1})
return result
def clear_history():
if "history_1" in st.session_state:
st.session_state.history_1 = []
st.session_state.messages_1 = []
# Define a function for submitting feedback
def _submit_feedback(user_response, emoji=None):
st.toast(f"Feedback submitted: {user_response}", icon=emoji)
return user_response.update({"some metadata": 123})
def format_chat_history(chat_history_1):
formatted_history = ""
for entry in chat_history_1:
question, answer = entry
# Added an extra '\n' for the blank line
formatted_history += f"Question: {question}\nAnswer: {answer}\n\n"
return formatted_history
def run_chatbot():
with st.sidebar.title("Sidebar"):
if st.button("Clear History"):
clear_history()
st.title("🦾 Law/News chatbot")
# Initialize the chatbot and load embeddings
if "messages_1" not in st.session_state:
with st.spinner("Initializing, please wait a moment!!!"):
st.session_state.vector_store = load_embeddings()
st.success("Finish!!!")
st.session_state["messages_1"] = [{"role": "assistant", "content": "Tôi có thể giúp gì được cho bạn?"}]
messages_1 = st.session_state.messages_1
feedback_kwargs = {
"feedback_type": "thumbs",
"optional_text_label": "Please provide extra information",
"on_submit": _submit_feedback,
}
for n, msg in enumerate(messages_1):
st.chat_message(msg["role"]).write(msg["content"])
if msg["role"] == "assistant" and n > 1:
feedback_key = f"feedback_{int(n/2)}"
if feedback_key not in st.session_state:
st.session_state[feedback_key] = None
streamlit_feedback(
**feedback_kwargs,
key=feedback_key,
)
chat_history_placeholder = st.empty()
if "history_1" not in st.session_state:
st.session_state.history_1 = []
if prompt := st.chat_input():
if "vector_store" in st.session_state:
vector_store = st.session_state["vector_store"]
q = prompt
st.session_state.messages_1.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
with st.spinner("Thinking..."):
response = ask_with_memory(vector_store, q, st.session_state.history_1)
if len(st.session_state.history_1) >= chat_context_length:
st.session_state.history_1 = st.session_state.history_1[1:]
st.session_state.history_1.append((q, response['answer']))
chat_history_str = format_chat_history(st.session_state.history_1)
msg = {"role": "assistant", "content": response['answer']}
st.session_state.messages_1.append(msg)
st.chat_message("assistant").write(msg["content"])
# Display the feedback component after the chatbot responds
feedback_key = f"feedback_{len(st.session_state.messages_1) - 1}"
streamlit_feedback(
**feedback_kwargs,
key=feedback_key,
) |