Spaces:
Sleeping
Sleeping
File size: 13,364 Bytes
5a1e954 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import streamlit as st
import os
import streamlit.components.v1 as components
from io import BytesIO
import requests
import ast
from langchain import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.vectorstores import Chroma
from langchain.embeddings import SentenceTransformerEmbeddings
from bardapi import Bard
from typing import Any, List, Mapping, Optional
os.environ['_BARD_API_KEY'] = "aAhD1NyQqzeoXs8PclDOD_hvEI3N9uHnsn2F0isADM5FFwBfYxatJf1csSUTMo4TXLjOxA."
from langchain.llms.base import LLM
from langchain.callbacks.manager import CallbackManagerForLLMRun
class BardLLM(LLM):
@property
def _llm_type(self) -> str:
return "custom"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
response = Bard(token=os.environ['_BARD_API_KEY']).get_answer(prompt)['content']
return response
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {}
@st.cache_data
def get_image(url):
r = requests.get(url)
return BytesIO(r.content)
# Define global variables
embeddings = None
index = None
QUESTION_PROMPT = None
qa = None
result = []
# Custom session state class for managing pagination
class SessionState:
def __init__(self):
self.page_index = 0 # Initialize page index
self.database_loaded = False # Initialize database loaded state
self.all_results_displayed = False
# Create a session state object
session_state = SessionState()
# Define the search function outside of Search_Property
def display_search_results(result, start_idx, end_idx):
if result:
st.subheader("Search Results:")
for idx in range(start_idx, end_idx):
if idx >= len(result):
break
property_info = result[idx]
st.markdown(f"**Result {idx + 1}**")
# Display property information
image_path_urls = property_info.metadata['Image URL']
if image_path_urls is not None and not isinstance(image_path_urls, float):
# Convert the string to a Python list
imageUrls = ast.literal_eval(image_path_urls)
# Now, imageUrls is a list of strings
st.image(imageUrls[0],width=700)
st.markdown(f"🏡 {property_info.metadata['Title']}")
st.write(f"📍 Address: {property_info.metadata['Location']}")
st.markdown(f"💰 Price: {property_info.metadata['Price']} VND | 📏 Size: {property_info.metadata['Area']}")
st.markdown(f"📅 Published Date: {property_info.metadata['Time stamp']}")
col3, col4 = st.columns([2, 1])
with col3:
with st.expander("Full Property Information"):
st.write(f"🏡 Property Title: {property_info.metadata['Title']}")
st.write(f"📏 Size: {property_info.metadata['Area']}")
st.write(f"🏢 Category: {property_info.metadata['Category']}")
st.write(f"📝 Description: {property_info.metadata['Description']}")
st.write(f"💰 Price: {property_info.metadata['Price']} VND")
st.write(f"📅 Date: {property_info.metadata['Time stamp']}")
st.write(f"📍 Address: {property_info.metadata['Location']}")
st.write(f"🆔 ID: {property_info.metadata['ID']}")
if 'Estate type' in property_info.metadata and property_info.metadata['Estate type'] is not None and not isinstance(property_info.metadata['Estate type'], float):
st.write(f"🏠 Housing Type: {property_info.metadata['Estate type']}")
if 'Email' in property_info.metadata and property_info.metadata['Email'] is not None and not isinstance(property_info.metadata['Email'], float):
st.write(f"✉️ Email: {property_info.metadata['Email']}")
if 'Mobile Phone' in property_info.metadata and property_info.metadata['Mobile Phone'] is not None and not isinstance(property_info.metadata['Mobile Phone'], float):
st.write(f"📞 Phone: {property_info.metadata['Mobile Phone']}")
if 'Certification status' in property_info.metadata and property_info.metadata['Certification status'] is not None and not isinstance(property_info.metadata['Certification status'], float):
st.write(f"🏆 Certification status: {property_info.metadata['Certification status']}")
if 'Direction' in property_info.metadata and property_info.metadata['Direction'] is not None and not isinstance(property_info.metadata['Direction'], float):
st.write(f"🧭 Direction: {property_info.metadata['Direction']}")
if 'Rooms' in property_info.metadata and property_info.metadata['Rooms'] is not None and not isinstance(property_info.metadata['Rooms'], float):
st.write(f"🚪 Rooms: {property_info.metadata['Rooms']}")
if 'Bedrooms' in property_info.metadata and property_info.metadata['Bedrooms'] is not None and not isinstance(property_info.metadata['Bedrooms'], float):
st.write(f"🛏️ Bedrooms: {property_info.metadata['Bedrooms']}")
if 'Kitchen' in property_info.metadata and property_info.metadata['Kitchen'] is not None and not isinstance(property_info.metadata['Kitchen'], float):
st.write(f"🍽️ Kitchen: {property_info.metadata['Kitchen']}")
if 'Living room' in property_info.metadata and property_info.metadata['Living room'] is not None and not isinstance(property_info.metadata['Living room'], float):
st.write(f"🛋️ Living room: {property_info.metadata['Living room']}")
if 'Bathrooms' in property_info.metadata and property_info.metadata['Bathrooms'] is not None and not isinstance(property_info.metadata['Bathrooms'], float):
st.write(f"🚽 Bathrooms: {property_info.metadata['Bathrooms']}")
if 'Front width' in property_info.metadata and property_info.metadata['Front width'] is not None and not isinstance(property_info.metadata['Front width'], float):
st.write(f"📐 Front width: {property_info.metadata['Front width']}")
if 'Floor' in property_info.metadata and property_info.metadata['Floor'] is not None and not isinstance(property_info.metadata['Floor'], float):
st.write(f"🧱 Floor: {property_info.metadata['Floor']}")
if 'Parking Slot' in property_info.metadata and property_info.metadata['Parking Slot'] is not None and not isinstance(property_info.metadata['Parking Slot'], float):
st.write(f"🚗 Parking Slot: {property_info.metadata['Parking Slot']}")
if 'Seller name' in property_info.metadata and property_info.metadata['Seller name'] is not None and not isinstance(property_info.metadata['Seller name'], float):
st.write(f"👤 Seller Name: {property_info.metadata['Seller name']}")
if 'Seller type' in property_info.metadata and property_info.metadata['Seller type'] is not None and not isinstance(property_info.metadata['Seller type'], float):
st.write(f"👨💼 Seller type: {property_info.metadata['Seller type']}")
if 'Seller Address' in property_info.metadata and property_info.metadata['Seller Address'] is not None and not isinstance(property_info.metadata['Seller Address'], float):
st.write(f"📌 Seller Address: {property_info.metadata['Seller Address']}")
if 'Balcony Direction' in property_info.metadata and property_info.metadata['Balcony Direction'] is not None and not isinstance(property_info.metadata['Balcony Direction'], float):
st.write(f"🌄 Balcony Direction: {property_info.metadata['Balcony Direction']}")
if 'Furniture' in property_info.metadata and property_info.metadata['Furniture'] is not None and not isinstance(property_info.metadata['Furniture'], float):
st.write(f"🛋️ Furniture: {property_info.metadata['Furniture']}")
if 'Toilet' in property_info.metadata and property_info.metadata['Toilet'] is not None and not isinstance(property_info.metadata['Toilet'], float):
st.write(f"🚽 Toilet: {property_info.metadata['Toilet']}")
with col4:
st.empty()
imageCarouselComponent = components.declare_component("image-carousel-component", path="frontend/public")
image_path_urls = property_info.metadata['Image URL']
if image_path_urls is not None and not isinstance(image_path_urls, float):
# Convert the string to a Python list
imageUrls = ast.literal_eval(image_path_urls)
if len(imageUrls) > 1:
selectedImageUrl = imageCarouselComponent(imageUrls=imageUrls, height=200)
if selectedImageUrl is not None:
st.image(selectedImageUrl)
# Add a divider after displaying property info
st.markdown("<hr style='border: 2px solid white'>", unsafe_allow_html=True) # Horizontal rule as a divider
def Search_Property():
global embeddings, index, result, QUESTION_PROMPT, qa
st.title("🏘️ Property Search ")
# Load data and create the search
if not session_state.database_loaded:
st.info("Loading database... This may take a moment.")
embeddings = SentenceTransformerEmbeddings(model_name="keepitreal/vietnamese-sbert")
# Create a Chroma object with persistence
db = Chroma(persist_directory="./chroma_index_1", embedding_function=embeddings)
# Get documents from the database
db.get()
llm=BardLLM()
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=db.as_retriever(search_type="similarity", search_kwargs={"k":4}),
return_source_documents=True)
question_template = """
Context: You are a helpful and informative bot that answers questions posed below using page_content information from real estate documents.
Do not create your own answer, just answer using page_content and metadata information from related documents in Vietnamese.
Be sure to respond in a complete sentence, being comprehensive, including all metadata information.
Imagine you're talking to a friend and use natural language and phrasing.
You can only use Vietnamese do not use other languages.
QUESTION: '{question}'
ANSWER:
"""
QUESTION_PROMPT = PromptTemplate(
template=question_template, input_variables=["question"]
)
session_state.database_loaded = True
if session_state.database_loaded:
col1, col2 = st.columns([2, 1]) # Create a two-column layout
with col1:
query = st.text_input("Enter your property search query:")
search_button = st.button("Search", help="Click to start the search")
if search_button:
with st.spinner("Searching..."):
if query is not None: # Check if model_embedding is not None
qa.combine_documents_chain.llm_chain.prompt = QUESTION_PROMPT
qa.combine_documents_chain.verbose = True
qa.return_source_documents = True
results = qa({"query":query,})
result = results["source_documents"]
session_state.page_index = 0 # Reset page index when a new search is performed
with col2:
if len(result) > 0:
st.write(f'Total Results: {len(result)} properties found.') # Display "Total Results" in the second column
if result:
N = 5
prev_button, next_button = st.columns([4,1])
last_page = len(result) // N
# Update page index based on button clicks
if prev_button.button("Previous", key="prev_button"):
if session_state.page_index - 1 < 0:
session_state.page_index = last_page
else:
session_state.page_index -= 1
if next_button.button("Next", key="next_button"):
if session_state.page_index > last_page:
session_state.page_index = 0
else:
session_state.page_index += 1
# Calculate the range of results to display (5 properties at a time)
start_idx = session_state.page_index * N
end_idx = (1 + session_state.page_index) * N
# Display results for the current page
display_search_results(result, start_idx, end_idx)
|