Spaces:
Sleeping
Sleeping
A-New-Day-001
commited on
Commit
•
42bbffa
1
Parent(s):
dcc4ede
Delete screens
Browse files- screens/__pycache__/analysis.cpython-311.pyc +0 -0
- screens/__pycache__/chat_bot.cpython-311.pyc +0 -0
- screens/__pycache__/chat_bot_2.cpython-311.pyc +0 -0
- screens/__pycache__/collection.cpython-311.pyc +0 -0
- screens/__pycache__/exploration.cpython-311.pyc +0 -0
- screens/__pycache__/index.cpython-311.pyc +0 -0
- screens/__pycache__/reflection.cpython-311.pyc +0 -0
- screens/__pycache__/search.cpython-311.pyc +0 -0
- screens/chat_bot.py +0 -187
- screens/chat_bot_2.py +0 -184
- screens/index.py +0 -26
- screens/search.py +0 -234
screens/__pycache__/analysis.cpython-311.pyc
DELETED
Binary file (1.08 kB)
|
|
screens/__pycache__/chat_bot.cpython-311.pyc
DELETED
Binary file (10.7 kB)
|
|
screens/__pycache__/chat_bot_2.cpython-311.pyc
DELETED
Binary file (10.2 kB)
|
|
screens/__pycache__/collection.cpython-311.pyc
DELETED
Binary file (1.8 kB)
|
|
screens/__pycache__/exploration.cpython-311.pyc
DELETED
Binary file (18.2 kB)
|
|
screens/__pycache__/index.cpython-311.pyc
DELETED
Binary file (850 Bytes)
|
|
screens/__pycache__/reflection.cpython-311.pyc
DELETED
Binary file (1.42 kB)
|
|
screens/__pycache__/search.cpython-311.pyc
DELETED
Binary file (17.9 kB)
|
|
screens/chat_bot.py
DELETED
@@ -1,187 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
#Import library
|
3 |
-
import yaml
|
4 |
-
#load config.yml and parse into variables
|
5 |
-
with open("config.yml", "r") as ymlfile:
|
6 |
-
cfg = yaml.safe_load(ymlfile)
|
7 |
-
_BARD_API_KEY = cfg["API_KEY"]["Bard"]
|
8 |
-
main_path = cfg["LOCAL_PATH"]["main_path"]
|
9 |
-
chat_context_length = cfg["CHAT"]["chat_context_length"]
|
10 |
-
model_name = cfg["EMBEDDINGS"]["HuggingFaceEmbeddings"]["model_name"]
|
11 |
-
model_kwargs = cfg["EMBEDDINGS"]["HuggingFaceEmbeddings"]["model_kwargs"]
|
12 |
-
chunk_size = cfg["CHUNK"]["chunk_size"]
|
13 |
-
chunk_overlap = cfg["CHUNK"]["chunk_overlap"]
|
14 |
-
|
15 |
-
from langchain.vectorstores import Chroma
|
16 |
-
import streamlit as st
|
17 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
18 |
-
from langchain.chains import ConversationalRetrievalChain
|
19 |
-
from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
|
20 |
-
# Bard
|
21 |
-
from bardapi import Bard
|
22 |
-
from typing import Any, List, Mapping, Optional
|
23 |
-
from langchain.llms.base import LLM
|
24 |
-
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
25 |
-
|
26 |
-
from streamlit_feedback import streamlit_feedback
|
27 |
-
|
28 |
-
|
29 |
-
#define Bard
|
30 |
-
class BardLLM(LLM):
|
31 |
-
|
32 |
-
@property
|
33 |
-
def _llm_type(self) -> str:
|
34 |
-
return "custom"
|
35 |
-
|
36 |
-
def _call(
|
37 |
-
self,
|
38 |
-
prompt: str,
|
39 |
-
stop: Optional[List[str]] = None,
|
40 |
-
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
41 |
-
) -> str:
|
42 |
-
response = Bard(token=_BARD_API_KEY).get_answer(prompt)['content']
|
43 |
-
return response
|
44 |
-
|
45 |
-
@property
|
46 |
-
def _identifying_params(self) -> Mapping[str, Any]:
|
47 |
-
"""Get the identifying parameters."""
|
48 |
-
return {}
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
def load_embeddings():
|
53 |
-
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
|
54 |
-
chroma_index = Chroma(persist_directory=main_path+"/vectorstore/chroma_db", embedding_function=embeddings)
|
55 |
-
print("Successfully loading embeddings and indexing")
|
56 |
-
return chroma_index
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
def ask_with_memory(vector_store, question, chat_history=[], document_description=""):
|
61 |
-
|
62 |
-
llm=BardLLM()
|
63 |
-
retriever = vector_store.as_retriever( # now the vs can return documents
|
64 |
-
search_type='similarity', search_kwargs={'k': 3})
|
65 |
-
|
66 |
-
general_system_template = f"""
|
67 |
-
You are a professional consultant at a real estate consulting company, providing consulting services \
|
68 |
-
to customers on real estate development strategies, real estate news and real estate law.\
|
69 |
-
Your role is to communicate with customer, then interact with them about their concerns about real estates.\
|
70 |
-
Once the customer has been provided their question,\
|
71 |
-
then you obtain some documents about real estate laws or real estate news related to their question.\
|
72 |
-
Then you will examine these documents .\
|
73 |
-
You must provide the answer based on these documents which means\
|
74 |
-
using only the heading and piece of context to answer the questions at the end.\
|
75 |
-
If you don't know the answer just say that you don't know, don't try to make up an answer. \
|
76 |
-
If the question is not in the field of real estate , just answer that you do not know. \
|
77 |
-
You respond in a short, very conversational friendly style.\
|
78 |
-
Answer only in Vietnamese\
|
79 |
-
----
|
80 |
-
HEADING: ({document_description})
|
81 |
-
CONTEXT: {{context}}
|
82 |
-
----
|
83 |
-
"""
|
84 |
-
general_user_template = """Here is the next question, remember to only answer if you can from the provided context.
|
85 |
-
If the question is not relevant to real estate , just answer that you do not know, do not create your own answer.
|
86 |
-
Only respond in Vietnamese.
|
87 |
-
QUESTION:```{question}```"""
|
88 |
-
|
89 |
-
messages = [
|
90 |
-
SystemMessagePromptTemplate.from_template(general_system_template),
|
91 |
-
HumanMessagePromptTemplate.from_template(general_user_template)
|
92 |
-
]
|
93 |
-
qa_prompt = ChatPromptTemplate.from_messages( messages )
|
94 |
-
|
95 |
-
|
96 |
-
crc = ConversationalRetrievalChain.from_llm(llm, retriever, combine_docs_chain_kwargs={'prompt': qa_prompt})
|
97 |
-
result = crc({'question': question, 'chat_history': chat_history})
|
98 |
-
return result
|
99 |
-
|
100 |
-
|
101 |
-
def clear_history():
|
102 |
-
if "history" in st.session_state:
|
103 |
-
st.session_state.history = []
|
104 |
-
st.session_state.messages = []
|
105 |
-
|
106 |
-
# Define a function for submitting feedback
|
107 |
-
def _submit_feedback(user_response, emoji=None):
|
108 |
-
st.toast(f"Feedback submitted: {user_response}", icon=emoji)
|
109 |
-
return user_response.update({"some metadata": 123})
|
110 |
-
|
111 |
-
|
112 |
-
def format_chat_history(chat_history):
|
113 |
-
formatted_history = ""
|
114 |
-
for entry in chat_history:
|
115 |
-
question, answer = entry
|
116 |
-
# Added an extra '\n' for the blank line
|
117 |
-
formatted_history += f"Question: {question}\nAnswer: {answer}\n\n"
|
118 |
-
return formatted_history
|
119 |
-
|
120 |
-
def run_chatbot():
|
121 |
-
with st.sidebar.title("Sidebar"):
|
122 |
-
if st.button("Clear History"):
|
123 |
-
clear_history()
|
124 |
-
|
125 |
-
st.title("🦾 Chatbot (news,law)")
|
126 |
-
|
127 |
-
# Initialize the chatbot and load embeddings
|
128 |
-
if "messages" not in st.session_state:
|
129 |
-
with st.spinner("Initializing, please wait a moment!!!"):
|
130 |
-
st.session_state.vector_store = load_embeddings()
|
131 |
-
st.success("Finish!!!")
|
132 |
-
st.session_state["messages"] = [{"role": "assistant", "content": "Tôi có thể giúp gì được cho bạn?"}]
|
133 |
-
|
134 |
-
messages = st.session_state.messages
|
135 |
-
feedback_kwargs = {
|
136 |
-
"feedback_type": "thumbs",
|
137 |
-
"optional_text_label": "Please provide extra information",
|
138 |
-
"on_submit": _submit_feedback,
|
139 |
-
}
|
140 |
-
|
141 |
-
for n, msg in enumerate(messages):
|
142 |
-
st.chat_message(msg["role"]).write(msg["content"])
|
143 |
-
|
144 |
-
if msg["role"] == "assistant" and n > 1:
|
145 |
-
feedback_key = f"feedback_{int(n/2)}"
|
146 |
-
|
147 |
-
if feedback_key not in st.session_state:
|
148 |
-
st.session_state[feedback_key] = None
|
149 |
-
|
150 |
-
streamlit_feedback(
|
151 |
-
**feedback_kwargs,
|
152 |
-
key=feedback_key,
|
153 |
-
)
|
154 |
-
|
155 |
-
|
156 |
-
chat_history_placeholder = st.empty()
|
157 |
-
if "history" not in st.session_state:
|
158 |
-
st.session_state.history = []
|
159 |
-
|
160 |
-
if prompt := st.chat_input():
|
161 |
-
if "vector_store" in st.session_state:
|
162 |
-
vector_store = st.session_state["vector_store"]
|
163 |
-
|
164 |
-
q = prompt
|
165 |
-
|
166 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
167 |
-
st.chat_message("user").write(prompt)
|
168 |
-
with st.spinner("Thinking..."):
|
169 |
-
response = ask_with_memory(vector_store, q, st.session_state.history)
|
170 |
-
|
171 |
-
if len(st.session_state.history) >= chat_context_length:
|
172 |
-
st.session_state.history = st.session_state.history[1:]
|
173 |
-
|
174 |
-
st.session_state.history.append((q, response['answer']))
|
175 |
-
|
176 |
-
chat_history_str = format_chat_history(st.session_state.history)
|
177 |
-
|
178 |
-
msg = {"role": "assistant", "content": response['answer']}
|
179 |
-
st.session_state.messages.append(msg)
|
180 |
-
st.chat_message("assistant").write(msg["content"])
|
181 |
-
|
182 |
-
# Display the feedback component after the chatbot responds
|
183 |
-
feedback_key = f"feedback_{len(st.session_state.messages) - 1}"
|
184 |
-
streamlit_feedback(
|
185 |
-
**feedback_kwargs,
|
186 |
-
key=feedback_key,
|
187 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
screens/chat_bot_2.py
DELETED
@@ -1,184 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
#Import library
|
3 |
-
import yaml
|
4 |
-
#load config.yml and parse into variables
|
5 |
-
with open("config2.yml", "r") as ymlfile:
|
6 |
-
cfg = yaml.safe_load(ymlfile)
|
7 |
-
_BARD_API_KEY = cfg["API_KEY"]["Bard"]
|
8 |
-
main_path = cfg["LOCAL_PATH"]["main_path"]
|
9 |
-
chat_context_length = cfg["CHAT"]["chat_context_length"]
|
10 |
-
model_name = cfg["EMBEDDINGS"]["HuggingFaceEmbeddings"]["model_name"]
|
11 |
-
model_kwargs = cfg["EMBEDDINGS"]["HuggingFaceEmbeddings"]["model_kwargs"]
|
12 |
-
chunk_size = cfg["CHUNK"]["chunk_size"]
|
13 |
-
chunk_overlap = cfg["CHUNK"]["chunk_overlap"]
|
14 |
-
|
15 |
-
import os
|
16 |
-
from dotenv import load_dotenv, find_dotenv
|
17 |
-
from langchain.vectorstores import Chroma
|
18 |
-
import streamlit.components.v1 as components
|
19 |
-
import streamlit as st
|
20 |
-
import sys
|
21 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
22 |
-
from langchain.chains import ConversationalRetrievalChain
|
23 |
-
from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
|
24 |
-
# Bard
|
25 |
-
from bardapi import Bard
|
26 |
-
from typing import Any, List, Mapping, Optional
|
27 |
-
from getpass import getpass
|
28 |
-
import os
|
29 |
-
from langchain.llms.base import LLM
|
30 |
-
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
31 |
-
|
32 |
-
from streamlit_feedback import streamlit_feedback
|
33 |
-
|
34 |
-
|
35 |
-
#define Bard
|
36 |
-
class BardLLM(LLM):
|
37 |
-
|
38 |
-
@property
|
39 |
-
def _llm_type(self) -> str:
|
40 |
-
return "custom"
|
41 |
-
|
42 |
-
def _call(
|
43 |
-
self,
|
44 |
-
prompt: str,
|
45 |
-
stop: Optional[List[str]] = None,
|
46 |
-
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
47 |
-
) -> str:
|
48 |
-
response = Bard(token=_BARD_API_KEY).get_answer(prompt)['content']
|
49 |
-
return response
|
50 |
-
|
51 |
-
@property
|
52 |
-
def _identifying_params(self) -> Mapping[str, Any]:
|
53 |
-
"""Get the identifying parameters."""
|
54 |
-
return {}
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
def load_embeddings():
|
59 |
-
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
|
60 |
-
chroma_index = Chroma(persist_directory="./chroma_index_1", embedding_function=embeddings)
|
61 |
-
print("Successfully loading embeddings and indexing")
|
62 |
-
return chroma_index
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
def ask_with_memory(vector_store, question, chat_history=[], document_description=""):
|
67 |
-
|
68 |
-
llm=BardLLM()
|
69 |
-
retriever = vector_store.as_retriever( # now the vs can return documents
|
70 |
-
search_type='similarity', search_kwargs={'k': 3})
|
71 |
-
|
72 |
-
general_system_template = f"""
|
73 |
-
You are a helpful and informative bot that answers questions posed below using page_content information from real estate documents.
|
74 |
-
Do not create your own answer, just answer using page_content and metadata information from related documents in Vietnamese.
|
75 |
-
Be sure to respond in a complete sentence, being comprehensive, including all metadata information.
|
76 |
-
Imagine you're talking to a friend and use natural language and phrasing.
|
77 |
-
You can only use Vietnamese do not use other languages.
|
78 |
-
----
|
79 |
-
CONTEXT: {{context}}
|
80 |
-
----
|
81 |
-
"""
|
82 |
-
general_user_template = """Here is the next question, remember to only answer if you can from the provided context.
|
83 |
-
If the question is not relevant to real estate , just answer that you do not know, do not create your own answer.
|
84 |
-
Only respond in Vietnamese.
|
85 |
-
QUESTION:```{question}```"""
|
86 |
-
|
87 |
-
messages = [
|
88 |
-
SystemMessagePromptTemplate.from_template(general_system_template),
|
89 |
-
HumanMessagePromptTemplate.from_template(general_user_template)
|
90 |
-
]
|
91 |
-
qa_prompt = ChatPromptTemplate.from_messages( messages )
|
92 |
-
|
93 |
-
|
94 |
-
crc = ConversationalRetrievalChain.from_llm(llm, retriever, combine_docs_chain_kwargs={'prompt': qa_prompt})
|
95 |
-
result = crc({'question': question, 'chat_history': chat_history})
|
96 |
-
return result
|
97 |
-
|
98 |
-
|
99 |
-
def clear_history():
|
100 |
-
if "history" in st.session_state:
|
101 |
-
st.session_state.history = []
|
102 |
-
st.session_state.messages = []
|
103 |
-
|
104 |
-
# Define a function for submitting feedback
|
105 |
-
def _submit_feedback(user_response, emoji=None):
|
106 |
-
st.toast(f"Feedback submitted: {user_response}", icon=emoji)
|
107 |
-
return user_response.update({"some metadata": 123})
|
108 |
-
|
109 |
-
|
110 |
-
def format_chat_history(chat_history):
|
111 |
-
formatted_history = ""
|
112 |
-
for entry in chat_history:
|
113 |
-
question, answer = entry
|
114 |
-
# Added an extra '\n' for the blank line
|
115 |
-
formatted_history += f"Question: {question}\nAnswer: {answer}\n\n"
|
116 |
-
return formatted_history
|
117 |
-
|
118 |
-
def run_chatbot_2():
|
119 |
-
with st.sidebar.title("Sidebar"):
|
120 |
-
if st.button("Clear History"):
|
121 |
-
clear_history()
|
122 |
-
|
123 |
-
st.title("🤖 Chatbot (property)")
|
124 |
-
|
125 |
-
# Initialize the chatbot and load embeddings
|
126 |
-
if "messages" not in st.session_state:
|
127 |
-
with st.spinner("Initializing, please wait a moment!!!"):
|
128 |
-
st.session_state.vector_store = load_embeddings()
|
129 |
-
st.success("Finish!!!")
|
130 |
-
st.session_state["messages"] = [{"role": "assistant", "content": "Tôi có thể giúp gì được cho bạn?"}]
|
131 |
-
|
132 |
-
messages = st.session_state.messages
|
133 |
-
feedback_kwargs = {
|
134 |
-
"feedback_type": "thumbs",
|
135 |
-
"optional_text_label": "Please provide extra information",
|
136 |
-
"on_submit": _submit_feedback,
|
137 |
-
}
|
138 |
-
|
139 |
-
for n, msg in enumerate(messages):
|
140 |
-
st.chat_message(msg["role"]).write(msg["content"])
|
141 |
-
|
142 |
-
if msg["role"] == "assistant" and n > 1:
|
143 |
-
feedback_key = f"feedback_{int(n/2)}"
|
144 |
-
|
145 |
-
if feedback_key not in st.session_state:
|
146 |
-
st.session_state[feedback_key] = None
|
147 |
-
|
148 |
-
streamlit_feedback(
|
149 |
-
**feedback_kwargs,
|
150 |
-
key=feedback_key,
|
151 |
-
)
|
152 |
-
|
153 |
-
chat_history_placeholder = st.empty()
|
154 |
-
if "history" not in st.session_state:
|
155 |
-
st.session_state.history = []
|
156 |
-
|
157 |
-
if prompt := st.chat_input():
|
158 |
-
if "vector_store" in st.session_state:
|
159 |
-
vector_store = st.session_state["vector_store"]
|
160 |
-
|
161 |
-
q = prompt
|
162 |
-
|
163 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
164 |
-
st.chat_message("user").write(prompt)
|
165 |
-
|
166 |
-
response = ask_with_memory(vector_store, q, st.session_state.history)
|
167 |
-
|
168 |
-
if len(st.session_state.history) >= chat_context_length:
|
169 |
-
st.session_state.history = st.session_state.history[1:]
|
170 |
-
|
171 |
-
st.session_state.history.append((q, response['answer']))
|
172 |
-
|
173 |
-
chat_history_str = format_chat_history(st.session_state.history)
|
174 |
-
|
175 |
-
msg = {"role": "assistant", "content": response['answer']}
|
176 |
-
st.session_state.messages.append(msg)
|
177 |
-
st.chat_message("assistant").write(msg["content"])
|
178 |
-
|
179 |
-
# Display the feedback component after the chatbot responds
|
180 |
-
feedback_key = f"feedback_{len(st.session_state.messages) - 1}"
|
181 |
-
streamlit_feedback(
|
182 |
-
**feedback_kwargs,
|
183 |
-
key=feedback_key,
|
184 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
screens/index.py
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
from screens.search import Search_Property
|
2 |
-
from screens.chat_bot import run_chatbot
|
3 |
-
from screens.chat_bot_2 import run_chatbot_2
|
4 |
-
from utils.index import get_hash
|
5 |
-
|
6 |
-
def get_routes():
|
7 |
-
screens = [
|
8 |
-
|
9 |
-
{
|
10 |
-
"component": Search_Property,
|
11 |
-
"name": "Search",
|
12 |
-
"icon": "search"
|
13 |
-
},
|
14 |
-
{
|
15 |
-
"component": run_chatbot,
|
16 |
-
"name": "Chatbot (news,law)",
|
17 |
-
"icon": "chat"
|
18 |
-
},
|
19 |
-
{
|
20 |
-
"component": run_chatbot_2,
|
21 |
-
"name": "Chatbot (property)",
|
22 |
-
"icon": "chat"
|
23 |
-
}
|
24 |
-
]
|
25 |
-
|
26 |
-
return get_hash(screens)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
screens/search.py
DELETED
@@ -1,234 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import os
|
3 |
-
import streamlit.components.v1 as components
|
4 |
-
from io import BytesIO
|
5 |
-
import requests
|
6 |
-
import ast
|
7 |
-
|
8 |
-
from langchain import PromptTemplate
|
9 |
-
from langchain.chains import RetrievalQA
|
10 |
-
from langchain.vectorstores import Chroma
|
11 |
-
from langchain.embeddings import SentenceTransformerEmbeddings
|
12 |
-
from bardapi import Bard
|
13 |
-
from typing import Any, List, Mapping, Optional
|
14 |
-
|
15 |
-
os.environ['_BARD_API_KEY'] = "aAhD1NyQqzeoXs8PclDOD_hvEI3N9uHnsn2F0isADM5FFwBfYxatJf1csSUTMo4TXLjOxA."
|
16 |
-
|
17 |
-
from langchain.llms.base import LLM
|
18 |
-
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
19 |
-
class BardLLM(LLM):
|
20 |
-
|
21 |
-
|
22 |
-
@property
|
23 |
-
def _llm_type(self) -> str:
|
24 |
-
return "custom"
|
25 |
-
|
26 |
-
def _call(
|
27 |
-
self,
|
28 |
-
prompt: str,
|
29 |
-
stop: Optional[List[str]] = None,
|
30 |
-
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
31 |
-
) -> str:
|
32 |
-
response = Bard(token=os.environ['_BARD_API_KEY']).get_answer(prompt)['content']
|
33 |
-
return response
|
34 |
-
|
35 |
-
@property
|
36 |
-
def _identifying_params(self) -> Mapping[str, Any]:
|
37 |
-
"""Get the identifying parameters."""
|
38 |
-
return {}
|
39 |
-
|
40 |
-
@st.cache_data
|
41 |
-
def get_image(url):
|
42 |
-
r = requests.get(url)
|
43 |
-
return BytesIO(r.content)
|
44 |
-
|
45 |
-
|
46 |
-
# Define global variables
|
47 |
-
embeddings = None
|
48 |
-
index = None
|
49 |
-
QUESTION_PROMPT = None
|
50 |
-
qa = None
|
51 |
-
result = []
|
52 |
-
|
53 |
-
# Custom session state class for managing pagination
|
54 |
-
class SessionState:
|
55 |
-
def __init__(self):
|
56 |
-
self.page_index = 0 # Initialize page index
|
57 |
-
self.database_loaded = False # Initialize database loaded state
|
58 |
-
self.all_results_displayed = False
|
59 |
-
|
60 |
-
# Create a session state object
|
61 |
-
session_state = SessionState()
|
62 |
-
|
63 |
-
# Define the search function outside of Search_Property
|
64 |
-
def display_search_results(result, start_idx, end_idx):
|
65 |
-
if result:
|
66 |
-
st.subheader("Search Results:")
|
67 |
-
for idx in range(start_idx, end_idx):
|
68 |
-
if idx >= len(result):
|
69 |
-
break
|
70 |
-
property_info = result[idx]
|
71 |
-
st.markdown(f"**Result {idx + 1}**")
|
72 |
-
|
73 |
-
# Display property information
|
74 |
-
image_path_urls = property_info.metadata['Image URL']
|
75 |
-
if image_path_urls is not None and not isinstance(image_path_urls, float):
|
76 |
-
# Convert the string to a Python list
|
77 |
-
imageUrls = ast.literal_eval(image_path_urls)
|
78 |
-
|
79 |
-
# Now, imageUrls is a list of strings
|
80 |
-
st.image(imageUrls[0],width=700)
|
81 |
-
|
82 |
-
st.markdown(f"🏡 {property_info.metadata['Title']}")
|
83 |
-
st.write(f"📍 Address: {property_info.metadata['Location']}")
|
84 |
-
st.markdown(f"💰 Price: {property_info.metadata['Price']} VND | 📏 Size: {property_info.metadata['Area']}")
|
85 |
-
st.markdown(f"📅 Published Date: {property_info.metadata['Time stamp']}")
|
86 |
-
col3, col4 = st.columns([2, 1])
|
87 |
-
with col3:
|
88 |
-
with st.expander("Full Property Information"):
|
89 |
-
st.write(f"🏡 Property Title: {property_info.metadata['Title']}")
|
90 |
-
st.write(f"📏 Size: {property_info.metadata['Area']}")
|
91 |
-
st.write(f"🏢 Category: {property_info.metadata['Category']}")
|
92 |
-
st.write(f"📝 Description: {property_info.metadata['Description']}")
|
93 |
-
st.write(f"💰 Price: {property_info.metadata['Price']} VND")
|
94 |
-
st.write(f"📅 Date: {property_info.metadata['Time stamp']}")
|
95 |
-
st.write(f"📍 Address: {property_info.metadata['Location']}")
|
96 |
-
st.write(f"🆔 ID: {property_info.metadata['ID']}")
|
97 |
-
if 'Estate type' in property_info.metadata and property_info.metadata['Estate type'] is not None and not isinstance(property_info.metadata['Estate type'], float):
|
98 |
-
st.write(f"🏠 Housing Type: {property_info.metadata['Estate type']}")
|
99 |
-
if 'Email' in property_info.metadata and property_info.metadata['Email'] is not None and not isinstance(property_info.metadata['Email'], float):
|
100 |
-
st.write(f"✉️ Email: {property_info.metadata['Email']}")
|
101 |
-
if 'Mobile Phone' in property_info.metadata and property_info.metadata['Mobile Phone'] is not None and not isinstance(property_info.metadata['Mobile Phone'], float):
|
102 |
-
st.write(f"📞 Phone: {property_info.metadata['Mobile Phone']}")
|
103 |
-
if 'Certification status' in property_info.metadata and property_info.metadata['Certification status'] is not None and not isinstance(property_info.metadata['Certification status'], float):
|
104 |
-
st.write(f"🏆 Certification status: {property_info.metadata['Certification status']}")
|
105 |
-
if 'Direction' in property_info.metadata and property_info.metadata['Direction'] is not None and not isinstance(property_info.metadata['Direction'], float):
|
106 |
-
st.write(f"🧭 Direction: {property_info.metadata['Direction']}")
|
107 |
-
if 'Rooms' in property_info.metadata and property_info.metadata['Rooms'] is not None and not isinstance(property_info.metadata['Rooms'], float):
|
108 |
-
st.write(f"🚪 Rooms: {property_info.metadata['Rooms']}")
|
109 |
-
if 'Bedrooms' in property_info.metadata and property_info.metadata['Bedrooms'] is not None and not isinstance(property_info.metadata['Bedrooms'], float):
|
110 |
-
st.write(f"🛏️ Bedrooms: {property_info.metadata['Bedrooms']}")
|
111 |
-
if 'Kitchen' in property_info.metadata and property_info.metadata['Kitchen'] is not None and not isinstance(property_info.metadata['Kitchen'], float):
|
112 |
-
st.write(f"🍽️ Kitchen: {property_info.metadata['Kitchen']}")
|
113 |
-
if 'Living room' in property_info.metadata and property_info.metadata['Living room'] is not None and not isinstance(property_info.metadata['Living room'], float):
|
114 |
-
st.write(f"🛋️ Living room: {property_info.metadata['Living room']}")
|
115 |
-
if 'Bathrooms' in property_info.metadata and property_info.metadata['Bathrooms'] is not None and not isinstance(property_info.metadata['Bathrooms'], float):
|
116 |
-
st.write(f"🚽 Bathrooms: {property_info.metadata['Bathrooms']}")
|
117 |
-
if 'Front width' in property_info.metadata and property_info.metadata['Front width'] is not None and not isinstance(property_info.metadata['Front width'], float):
|
118 |
-
st.write(f"📐 Front width: {property_info.metadata['Front width']}")
|
119 |
-
if 'Floor' in property_info.metadata and property_info.metadata['Floor'] is not None and not isinstance(property_info.metadata['Floor'], float):
|
120 |
-
st.write(f"🧱 Floor: {property_info.metadata['Floor']}")
|
121 |
-
if 'Parking Slot' in property_info.metadata and property_info.metadata['Parking Slot'] is not None and not isinstance(property_info.metadata['Parking Slot'], float):
|
122 |
-
st.write(f"🚗 Parking Slot: {property_info.metadata['Parking Slot']}")
|
123 |
-
if 'Seller name' in property_info.metadata and property_info.metadata['Seller name'] is not None and not isinstance(property_info.metadata['Seller name'], float):
|
124 |
-
st.write(f"👤 Seller Name: {property_info.metadata['Seller name']}")
|
125 |
-
if 'Seller type' in property_info.metadata and property_info.metadata['Seller type'] is not None and not isinstance(property_info.metadata['Seller type'], float):
|
126 |
-
st.write(f"👨💼 Seller type: {property_info.metadata['Seller type']}")
|
127 |
-
if 'Seller Address' in property_info.metadata and property_info.metadata['Seller Address'] is not None and not isinstance(property_info.metadata['Seller Address'], float):
|
128 |
-
st.write(f"📌 Seller Address: {property_info.metadata['Seller Address']}")
|
129 |
-
if 'Balcony Direction' in property_info.metadata and property_info.metadata['Balcony Direction'] is not None and not isinstance(property_info.metadata['Balcony Direction'], float):
|
130 |
-
st.write(f"🌄 Balcony Direction: {property_info.metadata['Balcony Direction']}")
|
131 |
-
if 'Furniture' in property_info.metadata and property_info.metadata['Furniture'] is not None and not isinstance(property_info.metadata['Furniture'], float):
|
132 |
-
st.write(f"🛋️ Furniture: {property_info.metadata['Furniture']}")
|
133 |
-
if 'Toilet' in property_info.metadata and property_info.metadata['Toilet'] is not None and not isinstance(property_info.metadata['Toilet'], float):
|
134 |
-
st.write(f"🚽 Toilet: {property_info.metadata['Toilet']}")
|
135 |
-
|
136 |
-
with col4:
|
137 |
-
st.empty()
|
138 |
-
|
139 |
-
imageCarouselComponent = components.declare_component("image-carousel-component", path="frontend/public")
|
140 |
-
image_path_urls = property_info.metadata['Image URL']
|
141 |
-
if image_path_urls is not None and not isinstance(image_path_urls, float):
|
142 |
-
# Convert the string to a Python list
|
143 |
-
imageUrls = ast.literal_eval(image_path_urls)
|
144 |
-
if len(imageUrls) > 1:
|
145 |
-
selectedImageUrl = imageCarouselComponent(imageUrls=imageUrls, height=200)
|
146 |
-
if selectedImageUrl is not None:
|
147 |
-
st.image(selectedImageUrl)
|
148 |
-
|
149 |
-
# Add a divider after displaying property info
|
150 |
-
st.markdown("<hr style='border: 2px solid white'>", unsafe_allow_html=True) # Horizontal rule as a divider
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
def Search_Property():
|
156 |
-
global embeddings, index, result, QUESTION_PROMPT, qa
|
157 |
-
|
158 |
-
st.title("🏘️ Property Search ")
|
159 |
-
# Load data and create the search
|
160 |
-
if not session_state.database_loaded:
|
161 |
-
st.info("Loading database... This may take a moment.")
|
162 |
-
embeddings = SentenceTransformerEmbeddings(model_name="keepitreal/vietnamese-sbert")
|
163 |
-
# Create a Chroma object with persistence
|
164 |
-
db = Chroma(persist_directory="./chroma_index_1", embedding_function=embeddings)
|
165 |
-
# Get documents from the database
|
166 |
-
db.get()
|
167 |
-
llm=BardLLM()
|
168 |
-
qa = RetrievalQA.from_chain_type(
|
169 |
-
llm=llm,
|
170 |
-
chain_type="stuff",
|
171 |
-
retriever=db.as_retriever(search_type="similarity", search_kwargs={"k":4}),
|
172 |
-
return_source_documents=True)
|
173 |
-
question_template = """
|
174 |
-
Context: You are a helpful and informative bot that answers questions posed below using page_content information from real estate documents.
|
175 |
-
Do not create your own answer, just answer using page_content and metadata information from related documents in Vietnamese.
|
176 |
-
Be sure to respond in a complete sentence, being comprehensive, including all metadata information.
|
177 |
-
Imagine you're talking to a friend and use natural language and phrasing.
|
178 |
-
You can only use Vietnamese do not use other languages.
|
179 |
-
|
180 |
-
QUESTION: '{question}'
|
181 |
-
|
182 |
-
ANSWER:
|
183 |
-
"""
|
184 |
-
QUESTION_PROMPT = PromptTemplate(
|
185 |
-
template=question_template, input_variables=["question"]
|
186 |
-
)
|
187 |
-
session_state.database_loaded = True
|
188 |
-
|
189 |
-
if session_state.database_loaded:
|
190 |
-
col1, col2 = st.columns([2, 1]) # Create a two-column layout
|
191 |
-
|
192 |
-
with col1:
|
193 |
-
query = st.text_input("Enter your property search query:")
|
194 |
-
search_button = st.button("Search", help="Click to start the search")
|
195 |
-
|
196 |
-
if search_button:
|
197 |
-
with st.spinner("Searching..."):
|
198 |
-
if query is not None: # Check if model_embedding is not None
|
199 |
-
qa.combine_documents_chain.llm_chain.prompt = QUESTION_PROMPT
|
200 |
-
qa.combine_documents_chain.verbose = True
|
201 |
-
qa.return_source_documents = True
|
202 |
-
results = qa({"query":query,})
|
203 |
-
result = results["source_documents"]
|
204 |
-
session_state.page_index = 0 # Reset page index when a new search is performed
|
205 |
-
|
206 |
-
with col2:
|
207 |
-
if len(result) > 0:
|
208 |
-
st.write(f'Total Results: {len(result)} properties found.') # Display "Total Results" in the second column
|
209 |
-
|
210 |
-
if result:
|
211 |
-
N = 5
|
212 |
-
prev_button, next_button = st.columns([4,1])
|
213 |
-
last_page = len(result) // N
|
214 |
-
|
215 |
-
|
216 |
-
# Update page index based on button clicks
|
217 |
-
if prev_button.button("Previous", key="prev_button"):
|
218 |
-
if session_state.page_index - 1 < 0:
|
219 |
-
session_state.page_index = last_page
|
220 |
-
else:
|
221 |
-
session_state.page_index -= 1
|
222 |
-
|
223 |
-
if next_button.button("Next", key="next_button"):
|
224 |
-
if session_state.page_index > last_page:
|
225 |
-
session_state.page_index = 0
|
226 |
-
else:
|
227 |
-
session_state.page_index += 1
|
228 |
-
|
229 |
-
# Calculate the range of results to display (5 properties at a time)
|
230 |
-
start_idx = session_state.page_index * N
|
231 |
-
end_idx = (1 + session_state.page_index) * N
|
232 |
-
|
233 |
-
# Display results for the current page
|
234 |
-
display_search_results(result, start_idx, end_idx)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|