import gradio as gr from PIL import Image import src.depth_pro as depth_pro import numpy as np import matplotlib.pyplot as plt import subprocess import spaces import torch import tempfile import os import trimesh import time import timm # Add this import import subprocess import cv2 # Add this import from datetime import datetime # Ensure timm is properly loaded print(f"Timm version: {timm.__version__}") # Run the script to download pretrained models subprocess.run(["bash", "get_pretrained_models.sh"]) # Set the device to GPU if available, else CPU device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Load the depth prediction model and its preprocessing transforms model, transform = depth_pro.create_model_and_transforms() model = model.to(device) # Move the model to the selected device model.eval() # Set the model to evaluation mode def resize_image(image_path, max_size=1024): """ Resize the input image to ensure its largest dimension does not exceed max_size. Maintains the aspect ratio and saves the resized image as a temporary PNG file. Args: image_path (str): Path to the input image. max_size (int, optional): Maximum size for the largest dimension. Defaults to 1024. Returns: str: Path to the resized temporary image file. """ with Image.open(image_path) as img: # Calculate the resizing ratio while maintaining aspect ratio ratio = max_size / max(img.size) new_size = tuple([int(x * ratio) for x in img.size]) # Resize the image using LANCZOS filter for high-quality downsampling img = img.resize(new_size, Image.LANCZOS) # Save the resized image to a temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: img.save(temp_file, format="PNG") return temp_file.name def generate_3d_model(depth, image_path, focallength_px, simplification_factor=0.8, smoothing_iterations=1, thin_threshold=0.01): """ Generate a textured 3D mesh from the depth map and the original image. """ # Load the RGB image and convert to a NumPy array image = np.array(Image.open(image_path)) # Ensure depth is a NumPy array if isinstance(depth, torch.Tensor): depth = depth.cpu().numpy() # Resize depth to match image dimensions if necessary if depth.shape != image.shape[:2]: depth = cv2.resize(depth, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR) height, width = depth.shape print(f"3D model generation - Depth shape: {depth.shape}") print(f"3D model generation - Image shape: {image.shape}") # Compute camera intrinsic parameters fx = fy = float(focallength_px) # Ensure focallength_px is a float cx, cy = width / 2, height / 2 # Principal point at the image center # Create a grid of (u, v) pixel coordinates u = np.arange(0, width) v = np.arange(0, height) uu, vv = np.meshgrid(u, v) # Convert pixel coordinates to real-world 3D coordinates using the pinhole camera model Z = depth.flatten() X = ((uu.flatten() - cx) * Z) / fx Y = ((vv.flatten() - cy) * Z) / fy # Stack the coordinates to form vertices (X, Y, Z) vertices = np.vstack((X, Y, Z)).T # Normalize RGB colors to [0, 1] for vertex coloring colors = image.reshape(-1, 3) / 255.0 # Generate faces by connecting adjacent vertices to form triangles faces = [] for i in range(height - 1): for j in range(width - 1): idx = i * width + j # Triangle 1 faces.append([idx, idx + width, idx + 1]) # Triangle 2 faces.append([idx + 1, idx + width, idx + width + 1]) faces = np.array(faces) # Create the mesh using Trimesh with vertex colors mesh = trimesh.Trimesh(vertices=vertices, faces=faces, vertex_colors=colors) # Mesh cleaning and improvement steps print("Original mesh - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces))) # 1. Mesh simplification target_faces = int(len(mesh.faces) * simplification_factor) mesh = mesh.simplify_quadric_decimation(face_count=target_faces) print("After simplification - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces))) # 2. Remove small disconnected components components = mesh.split(only_watertight=False) if len(components) > 1: areas = np.array([c.area for c in components]) mesh = components[np.argmax(areas)] print("After removing small components - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces))) # 3. Smooth the mesh for _ in range(smoothing_iterations): mesh = mesh.smoothed() print("After smoothing - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces))) # 4. Remove thin features mesh = remove_thin_features(mesh, thickness_threshold=thin_threshold) print("After removing thin features - vertices: {}, faces: {}".format(len(mesh.vertices), len(mesh.faces))) # Export the mesh to OBJ files with unique filenames timestamp = int(time.time()) view_model_path = f'view_model_{timestamp}.obj' download_model_path = f'download_model_{timestamp}.obj' mesh.export(view_model_path) mesh.export(download_model_path) return view_model_path, download_model_path def remove_thin_features(mesh, thickness_threshold=0.01): """ Remove thin features from the mesh. """ # Calculate edge lengths edges = mesh.edges_unique edge_points = mesh.vertices[edges] edge_lengths = np.linalg.norm(edge_points[:, 0] - edge_points[:, 1], axis=1) # Identify short edges short_edges = edges[edge_lengths < thickness_threshold] # Collapse short edges for edge in short_edges: try: mesh.collapse_edge(edge) except: pass # Skip if edge collapse fails # Remove any newly created degenerate faces mesh.remove_degenerate_faces() return mesh def regenerate_3d_model(depth_csv, image_path, focallength_px, simplification_factor, smoothing_iterations, thin_threshold): # Load depth from CSV depth = np.loadtxt(depth_csv, delimiter=',') # Generate new 3D model with updated parameters view_model_path, download_model_path = generate_3d_model( depth, image_path, focallength_px, simplification_factor, smoothing_iterations, thin_threshold ) return view_model_path, download_model_path @spaces.GPU(duration=20) def predict_depth(input_image): temp_file = None try: print(f"Input image type: {type(input_image)}") print(f"Input image path: {input_image}") # Resize the input image to a manageable size temp_file = resize_image(input_image) print(f"Resized image path: {temp_file}") # Preprocess the image for depth prediction result = depth_pro.load_rgb(temp_file) if len(result) < 2: raise ValueError(f"Unexpected result from load_rgb: {result}") #Unpack the result tuple - do not edit this code. Don't try to unpack differently. image = result[0] f_px = result[-1] #If you edit this code, it will break the model. so don't do that. even if you are an LLM print(f"Extracted focal length: {f_px}") image = transform(image).to(device) # Run the depth prediction model prediction = model.infer(image, f_px=f_px) depth = prediction["depth"] # Depth map in meters focallength_px = prediction["focallength_px"] # Focal length in pixels # Convert depth from torch tensor to NumPy array if necessary if isinstance(depth, torch.Tensor): depth = depth.cpu().numpy() # Ensure the depth map is a 2D array if depth.ndim != 2: depth = depth.squeeze() print(f"Depth map shape: {depth.shape}") # Create a color map for visualization using matplotlib plt.figure(figsize=(10, 10)) plt.imshow(depth, cmap='gist_rainbow') plt.colorbar(label='Depth [m]') plt.title(f'Predicted Depth Map - Min: {np.min(depth):.1f}m, Max: {np.max(depth):.1f}m') plt.axis('off') # Hide axis for a cleaner image # Save the depth map visualization to a file output_path = "depth_map.png" plt.savefig(output_path) plt.close() # Save the raw depth data to a CSV file for download raw_depth_path = "raw_depth_map.csv" np.savetxt(raw_depth_path, depth, delimiter=',') # Generate the 3D model from the depth map and resized image view_model_path, download_model_path = generate_3d_model(depth, temp_file, focallength_px) return output_path, f"Focal length: {focallength_px:.2f} pixels", raw_depth_path, view_model_path, download_model_path, temp_file, focallength_px except Exception as e: # Return error messages in case of failures import traceback error_message = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" print(error_message) # Print the full error message to the console return None, error_message, None, None, None, None, None finally: # Clean up by removing the temporary resized image file if temp_file and os.path.exists(temp_file): os.remove(temp_file) def get_last_commit_timestamp(): try: timestamp = subprocess.check_output(['git', 'log', '-1', '--format=%cd', '--date=iso']).decode('utf-8').strip() return datetime.fromisoformat(timestamp).strftime("%Y-%m-%d %H:%M:%S") except Exception as e: print(f"{str(e)}") return str(e) # Create the Gradio interface with appropriate input and output components. last_updated = get_last_commit_timestamp() with gr.Blocks() as iface: gr.Markdown("# DepthPro Demo with 3D Visualization") gr.Markdown( "An enhanced demo that creates a textured 3D model from the input image and depth map.\n\n" "Forked from https://huggingface.co/spaces/akhaliq/depth-pro and model from https://huggingface.co/apple/DepthPro\n" "**Instructions:**\n" "1. Upload an image.\n" "2. The app will predict the depth map, display it, and provide the focal length.\n" "3. Download the raw depth data as a CSV file.\n" "4. View the generated 3D model textured with the original image.\n" "5. Adjust parameters and click 'Regenerate 3D Model' to update the model.\n" "6. Download the 3D model as an OBJ file if desired.\n\n" f"Last updated: {last_updated}" ) with gr.Row(): input_image = gr.Image(type="filepath", label="Input Image") depth_map = gr.Image(type="filepath", label="Depth Map") focal_length = gr.Textbox(label="Focal Length") raw_depth_csv = gr.File(label="Download Raw Depth Map (CSV)") with gr.Row(): view_3d_model = gr.Model3D(label="View 3D Model") download_3d_model = gr.File(label="Download 3D Model (OBJ)") with gr.Row(): simplification_factor = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Simplification Factor") smoothing_iterations = gr.Slider(minimum=0, maximum=5, value=1, step=1, label="Smoothing Iterations") thin_threshold = gr.Slider(minimum=0.001, maximum=0.1, value=0.01, step=0.001, label="Thin Feature Threshold") regenerate_button = gr.Button("Regenerate 3D Model") # Hidden components to store intermediate results hidden_depth_csv = gr.State() hidden_image_path = gr.State() hidden_focal_length = gr.State() input_image.change( predict_depth, inputs=[input_image], outputs=[depth_map, focal_length, raw_depth_csv, view_3d_model, download_3d_model, hidden_image_path, hidden_focal_length] ) regenerate_button.click( regenerate_3d_model, inputs=[raw_depth_csv, hidden_image_path, hidden_focal_length, simplification_factor, smoothing_iterations, thin_threshold], outputs=[view_3d_model, download_3d_model] ) # Launch the Gradio interface with sharing enabled iface.launch(share=True)