File size: 5,072 Bytes
9bd9742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from flask import Flask, request, Response
from io import BytesIO
import torch
from av import open as avopen

import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
from scipy.io import wavfile

# Flask Init
app = Flask(__name__)
app.config["JSON_AS_ASCII"] = False


def get_text(text, language_str, hps):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert = get_bert(norm_text, word2ph, language_str)
    del word2ph
    assert bert.shape[-1] == len(phone), phone

    if language_str == "ZH":
        bert = bert
        ja_bert = torch.zeros(768, len(phone))
    elif language_str == "JA":
        ja_bert = bert
        bert = torch.zeros(1024, len(phone))
    else:
        bert = torch.zeros(1024, len(phone))
        ja_bert = torch.zeros(768, len(phone))
    assert bert.shape[-1] == len(
        phone
    ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, ja_bert, phone, tone, language


def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
    bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
    with torch.no_grad():
        x_tst = phones.to(dev).unsqueeze(0)
        tones = tones.to(dev).unsqueeze(0)
        lang_ids = lang_ids.to(dev).unsqueeze(0)
        bert = bert.to(dev).unsqueeze(0)
        ja_bert = ja_bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(dev)
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(dev)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                ja_bert,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        return audio


def replace_punctuation(text, i=2):
    punctuation = ",。?!"
    for char in punctuation:
        text = text.replace(char, char * i)
    return text


def wav2(i, o, format):
    inp = avopen(i, "rb")
    out = avopen(o, "wb", format=format)
    if format == "ogg":
        format = "libvorbis"

    ostream = out.add_stream(format)

    for frame in inp.decode(audio=0):
        for p in ostream.encode(frame):
            out.mux(p)

    for p in ostream.encode(None):
        out.mux(p)

    out.close()
    inp.close()


# Load Generator
hps = utils.get_hparams_from_file("./configs/config.json")

dev = "cuda"
net_g = SynthesizerTrn(
    len(symbols),
    hps.data.filter_length // 2 + 1,
    hps.train.segment_size // hps.data.hop_length,
    n_speakers=hps.data.n_speakers,
    **hps.model,
).to(dev)
_ = net_g.eval()

_ = utils.load_checkpoint("logs/G_649000.pth", net_g, None, skip_optimizer=True)


@app.route("/")
def main():
    try:
        speaker = request.args.get("speaker")
        text = request.args.get("text").replace("/n", "")
        sdp_ratio = float(request.args.get("sdp_ratio", 0.2))
        noise = float(request.args.get("noise", 0.5))
        noisew = float(request.args.get("noisew", 0.6))
        length = float(request.args.get("length", 1.2))
        language = request.args.get("language")
        if length >= 2:
            return "Too big length"
        if len(text) >= 250:
            return "Too long text"
        fmt = request.args.get("format", "wav")
        if None in (speaker, text):
            return "Missing Parameter"
        if fmt not in ("mp3", "wav", "ogg"):
            return "Invalid Format"
        if language not in ("JA", "ZH"):
            return "Invalid language"
    except:
        return "Invalid Parameter"

    with torch.no_grad():
        audio = infer(
            text,
            sdp_ratio=sdp_ratio,
            noise_scale=noise,
            noise_scale_w=noisew,
            length_scale=length,
            sid=speaker,
            language=language,
        )

    with BytesIO() as wav:
        wavfile.write(wav, hps.data.sampling_rate, audio)
        torch.cuda.empty_cache()
        if fmt == "wav":
            return Response(wav.getvalue(), mimetype="audio/wav")
        wav.seek(0, 0)
        with BytesIO() as ofp:
            wav2(wav, ofp, fmt)
            return Response(
                ofp.getvalue(), mimetype="audio/mpeg" if fmt == "mp3" else "audio/ogg"
            )