Using FP16 for inference, trying to avoid weird, stupidly long inference time.
Browse files
app.py
CHANGED
@@ -78,8 +78,8 @@ def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, langua
|
|
78 |
x_tst = phones.to(device).unsqueeze(0)
|
79 |
tones = tones.to(device).unsqueeze(0)
|
80 |
lang_ids = lang_ids.to(device).unsqueeze(0)
|
81 |
-
bert = bert.to(device).unsqueeze(0)
|
82 |
-
ja_bert = ja_bert.to(device).unsqueeze(0)
|
83 |
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
|
84 |
del phones
|
85 |
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
|
@@ -172,7 +172,7 @@ if __name__ == "__main__":
|
|
172 |
hps.train.segment_size // hps.data.hop_length,
|
173 |
n_speakers=hps.data.n_speakers,
|
174 |
**hps.model,
|
175 |
-
).to(device)
|
176 |
_ = net_g.eval()
|
177 |
|
178 |
_ = utils.load_checkpoint(args.model, net_g, None, skip_optimizer=True)
|
|
|
78 |
x_tst = phones.to(device).unsqueeze(0)
|
79 |
tones = tones.to(device).unsqueeze(0)
|
80 |
lang_ids = lang_ids.to(device).unsqueeze(0)
|
81 |
+
bert = bert.half().to(device).unsqueeze(0)
|
82 |
+
ja_bert = ja_bert.half().to(device).unsqueeze(0)
|
83 |
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
|
84 |
del phones
|
85 |
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
|
|
|
172 |
hps.train.segment_size // hps.data.hop_length,
|
173 |
n_speakers=hps.data.n_speakers,
|
174 |
**hps.model,
|
175 |
+
).half().to(device)
|
176 |
_ = net_g.eval()
|
177 |
|
178 |
_ = utils.load_checkpoint(args.model, net_g, None, skip_optimizer=True)
|