File size: 1,617 Bytes
90729fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from langchain.document_loaders import TextLoader, NotionDirectoryLoader
from langchain.text_splitter import SpacyTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader, NotionDirectoryLoader
from langchain.vectorstores.base import VectorStoreRetriever
from langchain.llms import OpenAI


class CustomEmbedding:
    notionDirectoryLoader = NotionDirectoryLoader(
        "documents/bussiness_context")
    embeddings = HuggingFaceEmbeddings()

    def calculateEmbedding(self):
        documents = self.notionDirectoryLoader.load()
        text_splitter = SpacyTextSplitter(
            chunk_size=256, pipeline="zh_core_web_sm", chunk_overlap=200)
        texts = text_splitter.split_documents(documents)

        docsearch = FAISS.from_documents(texts, self.embeddings)
        docsearch.save_local(
            folder_path="./documents/business_context.faiss")

    def getFAQChain(self, llm=OpenAI(temperature=0.7)):
        docsearch = FAISS.load_local(
            "./documents/business_context.faiss", self.embeddings)
        retriever = VectorStoreRetriever(vectorstore=docsearch)
        faq_chain = RetrievalQA.from_llm(
            llm=llm, retriever=retriever, verbose=True)
        return faq_chain


# customerEmbedding = CustomEmbedding()
# # customerEmbedding.calculateEmbedding()
# # customerEmbedding.calculateNotionEmbedding()

# faq_chain = customerEmbedding.getFAQChain()
# result = faq_chain.run(
#     "Smart Domain 分层架构")

# print(result)