Spaces:
Running
Running
File size: 35,600 Bytes
49e32ea 9a3229c 49e32ea 9a3229c 49e32ea 1ae7b34 49e32ea 1ae7b34 49e32ea ae4a7ec 49e32ea ae4a7ec 49e32ea ae4a7ec 49e32ea 9118536 ae4a7ec 49e32ea ae4a7ec 49e32ea 9118536 49e32ea ae4a7ec 49e32ea ae4a7ec 49e32ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 |
import re
import datetime
from typing import TypeVar, Dict, List, Tuple
from itertools import compress
import pandas as pd
import numpy as np
# Model packages
import torch
from threading import Thread
from transformers import AutoTokenizer, pipeline, TextIteratorStreamer
# Alternative model sources
from gpt4all import GPT4All
from ctransformers import AutoModelForCausalLM
from dataclasses import asdict, dataclass
# Langchain functions
from langchain import PromptTemplate
from langchain.prompts import PromptTemplate
from langchain.vectorstores import FAISS
from langchain.retrievers import SVMRetriever
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document
# For keyword extraction
import nltk
nltk.download('wordnet')
from nltk.corpus import stopwords
from nltk.tokenize import RegexpTokenizer
from nltk.stem import WordNetLemmatizer
import keybert
#from transformers.pipelines import pipeline
# For Name Entity Recognition model
from span_marker import SpanMarkerModel
# For BM25 retrieval
from gensim.corpora import Dictionary
from gensim.models import TfidfModel, OkapiBM25Model
from gensim.similarities import SparseMatrixSimilarity
import gradio as gr
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
print("Running on device:", torch_device)
threads = torch.get_num_threads()
print("CPU threads:", threads)
PandasDataFrame = TypeVar('pd.core.frame.DataFrame')
embeddings = None # global variable setup
vectorstore = None # global variable setup
full_text = "" # Define dummy source text (full text) just to enable highlight function to load
ctrans_llm = [] # Define empty list to hold CTrans LLMs for functions to run
temperature: float = 0.1
top_k: int = 3
top_p: float = 1
repetition_penalty: float = 1.05
last_n_tokens: int = 64
max_new_tokens: int = 125
#seed: int = 42
reset: bool = False
stream: bool = True
threads: int = threads
batch_size:int = 512
context_length:int = 2048
gpu_layers:int = 0
sample = False
## Highlight text constants
hlt_chunk_size = 20
hlt_strat = [" ", ".", "!", "?", ":", "\n\n", "\n", ","]
hlt_overlap = 0
## Initialise NER model ##
ner_model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-mbert-base-multinerd")
## Initialise keyword model ##
# Used to pull out keywords from chat history to add to user queries behind the scenes
kw_model = pipeline("feature-extraction", model="sentence-transformers/all-MiniLM-L6-v2")
## Chat models ##
ctrans_llm = [] # Not leaded by default
#ctrans_llm = AutoModelForCausalLM.from_pretrained('TheBloke/orca_mini_3B-GGML', model_type='llama', model_file='orca-mini-3b.ggmlv3.q4_0.bin')
#ctrans_llm = AutoModelForCausalLM.from_pretrained('TheBloke/orca_mini_3B-GGML', model_type='llama', model_file='orca-mini-3b.ggmlv3.q8_0.bin')
#gpt4all_model = GPT4All(model_name= "orca-mini-3b.ggmlv3.q4_0.bin", model_path="models/") # "ggml-mpt-7b-chat.bin"
# Huggingface chat model
hf_checkpoint = 'declare-lab/flan-alpaca-large'
def create_hf_model(model_name):
from transformers import AutoModelForSeq2SeqLM, AutoModelForCausalLM
# model_id = model_name
if torch_device == "cuda":
if "flan" in model_name:
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, load_in_8bit=True, device_map="auto")
elif "mpt" in model_name:
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_8bit=True, device_map="auto", trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_8bit=True, device_map="auto")
else:
if "flan" in model_name:
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
elif "mpt" in model_name:
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, model_max_length = 2048)
return model, tokenizer, torch_device
model, tokenizer, torch_device = create_hf_model(model_name = hf_checkpoint)
# Vectorstore funcs
def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings):
print(f"> Total split documents: {len(docs_out)}")
vectorstore_func = FAISS.from_documents(documents=docs_out, embedding=embeddings)
'''
#with open("vectorstore.pkl", "wb") as f:
#pickle.dump(vectorstore, f)
'''
#if Path(save_to).exists():
# vectorstore_func.save_local(folder_path=save_to)
#else:
# os.mkdir(save_to)
# vectorstore_func.save_local(folder_path=save_to)
global vectorstore
vectorstore = vectorstore_func
out_message = "Document processing complete"
#print(out_message)
#print(f"> Saved to: {save_to}")
return out_message
# # Prompt functions
def create_prompt_templates():
#EXAMPLE_PROMPT = PromptTemplate(
# template="\nCONTENT:\n\n{page_content}\n\nSOURCE: {source}\n\n",
# input_variables=["page_content", "source"],
#)
CONTENT_PROMPT = PromptTemplate(
template="{page_content}\n\n",#\n\nSOURCE: {source}\n\n",
input_variables=["page_content"]
)
# The main prompt:
instruction_prompt_template_alpaca_quote = """### Instruction:
Quote directly from the SOURCE below that best answers the QUESTION. Only quote full sentences in the correct order. If you cannot find an answer, start your response with "My best guess is: ".
CONTENT: {summaries}
QUESTION: {question}
Response:"""
instruction_prompt_template_orca = """
### System:
You are an AI assistant that follows instruction extremely well. Help as much as you can.
### User:
Answer the QUESTION using information from the following CONTENT.
CONTENT: {summaries}
QUESTION: {question}
### Response:"""
INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_template_orca, input_variables=['question', 'summaries'])
return INSTRUCTION_PROMPT, CONTENT_PROMPT
def adapt_q_from_chat_history(question, chat_history, extracted_memory, keyword_model=""):#keyword_model): # new_question_keywords,
chat_history_str, chat_history_first_q, chat_history_first_ans, max_chat_length = _get_chat_history(chat_history)
if chat_history_str:
# Keyword extraction is now done in the add_inputs_to_history function
extracted_memory = extracted_memory#remove_q_stopwords(str(chat_history_first_q) + " " + str(chat_history_first_ans))
new_question_kworded = str(extracted_memory) + ". " + question #+ " " + new_question_keywords
#extracted_memory + " " + question
else:
new_question_kworded = question #new_question_keywords
#print("Question output is: " + new_question_kworded)
return new_question_kworded
def create_doc_df(docs_keep_out):
# Extract content and metadata from 'winning' passages.
content=[]
meta=[]
meta_url=[]
page_section=[]
score=[]
for item in docs_keep_out:
content.append(item[0].page_content)
meta.append(item[0].metadata)
meta_url.append(item[0].metadata['source'])
page_section.append(item[0].metadata['page_section'])
score.append(item[1])
# Create df from 'winning' passages
doc_df = pd.DataFrame(list(zip(content, meta, page_section, meta_url, score)),
columns =['page_content', 'metadata', 'page_section', 'meta_url', 'score'])
docs_content = doc_df['page_content'].astype(str)
doc_df['full_url'] = "https://" + doc_df['meta_url']
return doc_df
def hybrid_retrieval(new_question_kworded, k_val, out_passages,
vec_score_cut_off, vec_weight, bm25_weight, svm_weight): # ,vectorstore, embeddings
vectorstore=globals()["vectorstore"]
embeddings=globals()["embeddings"]
docs = vectorstore.similarity_search_with_score(new_question_kworded, k=k_val)
print("Docs from similarity search:")
print(docs)
# Keep only documents with a certain score
docs_len = [len(x[0].page_content) for x in docs]
docs_scores = [x[1] for x in docs]
# Only keep sources that are sufficiently relevant (i.e. similarity search score below threshold below)
score_more_limit = pd.Series(docs_scores) < vec_score_cut_off
docs_keep = list(compress(docs, score_more_limit))
if docs_keep == []:
docs_keep_as_doc = []
docs_content = []
docs_url = []
return docs_keep_as_doc, docs_content, docs_url
# Only keep sources that are at least 100 characters long
length_more_limit = pd.Series(docs_len) >= 100
docs_keep = list(compress(docs_keep, length_more_limit))
if docs_keep == []:
docs_keep_as_doc = []
docs_content = []
docs_url = []
return docs_keep_as_doc, docs_content, docs_url
docs_keep_as_doc = [x[0] for x in docs_keep]
docs_keep_length = len(docs_keep_as_doc)
if docs_keep_length == 1:
content=[]
meta_url=[]
score=[]
for item in docs_keep:
content.append(item[0].page_content)
meta_url.append(item[0].metadata['source'])
score.append(item[1])
# Create df from 'winning' passages
doc_df = pd.DataFrame(list(zip(content, meta_url, score)),
columns =['page_content', 'meta_url', 'score'])
docs_content = doc_df['page_content'].astype(str)
docs_url = doc_df['meta_url']
return docs_keep_as_doc, docs_content, docs_url
# Check for if more docs are removed than the desired output
if out_passages > docs_keep_length:
out_passages = docs_keep_length
k_val = docs_keep_length
vec_rank = [*range(1, docs_keep_length+1)]
vec_score = [(docs_keep_length/x)*vec_weight for x in vec_rank]
# 2nd level check on retrieved docs with BM25
content_keep=[]
for item in docs_keep:
content_keep.append(item[0].page_content)
corpus = corpus = [doc.lower().split() for doc in content_keep]
dictionary = Dictionary(corpus)
bm25_model = OkapiBM25Model(dictionary=dictionary)
bm25_corpus = bm25_model[list(map(dictionary.doc2bow, corpus))]
bm25_index = SparseMatrixSimilarity(bm25_corpus, num_docs=len(corpus), num_terms=len(dictionary),
normalize_queries=False, normalize_documents=False)
query = new_question_kworded.lower().split()
tfidf_model = TfidfModel(dictionary=dictionary, smartirs='bnn') # Enforce binary weighting of queries
tfidf_query = tfidf_model[dictionary.doc2bow(query)]
similarities = np.array(bm25_index[tfidf_query])
#print(similarities)
temp = similarities.argsort()
ranks = np.arange(len(similarities))[temp.argsort()][::-1]
# Pair each index with its corresponding value
pairs = list(zip(ranks, docs_keep_as_doc))
# Sort the pairs by the indices
pairs.sort()
# Extract the values in the new order
bm25_result = [value for ranks, value in pairs]
bm25_rank=[]
bm25_score = []
for vec_item in docs_keep:
x = 0
for bm25_item in bm25_result:
x = x + 1
if bm25_item.page_content == vec_item[0].page_content:
bm25_rank.append(x)
bm25_score.append((docs_keep_length/x)*bm25_weight)
# 3rd level check on retrieved docs with SVM retriever
svm_retriever = SVMRetriever.from_texts(content_keep, embeddings, k = k_val)
svm_result = svm_retriever.get_relevant_documents(new_question_kworded)
svm_rank=[]
svm_score = []
for vec_item in docs_keep:
x = 0
for svm_item in svm_result:
x = x + 1
if svm_item.page_content == vec_item[0].page_content:
svm_rank.append(x)
svm_score.append((docs_keep_length/x)*svm_weight)
## Calculate final score based on three ranking methods
final_score = [a + b + c for a, b, c in zip(vec_score, bm25_score, svm_score)]
final_rank = [sorted(final_score, reverse=True).index(x)+1 for x in final_score]
# Force final_rank to increment by 1 each time
final_rank = list(pd.Series(final_rank).rank(method='first'))
#print("final rank: " + str(final_rank))
#print("out_passages: " + str(out_passages))
best_rank_index_pos = []
for x in range(1,out_passages+1):
try:
best_rank_index_pos.append(final_rank.index(x))
except IndexError: # catch the error
pass
# Adjust best_rank_index_pos to
best_rank_pos_series = pd.Series(best_rank_index_pos)
docs_keep_out = [docs_keep[i] for i in best_rank_index_pos]
# Keep only 'best' options
docs_keep_as_doc = [x[0] for x in docs_keep_out]
# Make df of best options
doc_df = create_doc_df(docs_keep_out)
return docs_keep_as_doc, doc_df, docs_keep_out
def get_expanded_passages(vectorstore, docs, width):
"""
Extracts expanded passages based on given documents and a width for context.
Parameters:
- vectorstore: The primary data source.
- docs: List of documents to be expanded.
- width: Number of documents to expand around a given document for context.
Returns:
- expanded_docs: List of expanded Document objects.
- doc_df: DataFrame representation of expanded_docs.
"""
def get_docs_from_vstore(vectorstore):
vector = vectorstore.docstore._dict
return list(vector.items())
def extract_details(docs_list):
docs_list_out = [tup[1] for tup in docs_list]
content = [doc.page_content for doc in docs_list_out]
meta = [doc.metadata for doc in docs_list_out]
return ''.join(content), meta[0], meta[-1]
def get_parent_content_and_meta(vstore_docs, width, target):
target_range = range(max(0, target - width), min(len(vstore_docs), target + width + 1))
parent_vstore_out = [vstore_docs[i] for i in target_range]
content_str_out, meta_first_out, meta_last_out = [], [], []
for _ in parent_vstore_out:
content_str, meta_first, meta_last = extract_details(parent_vstore_out)
content_str_out.append(content_str)
meta_first_out.append(meta_first)
meta_last_out.append(meta_last)
return content_str_out, meta_first_out, meta_last_out
def merge_dicts_except_source(d1, d2):
merged = {}
for key in d1:
if key != "source":
merged[key] = str(d1[key]) + " to " + str(d2[key])
else:
merged[key] = d1[key] # or d2[key], based on preference
return merged
def merge_two_lists_of_dicts(list1, list2):
return [merge_dicts_except_source(d1, d2) for d1, d2 in zip(list1, list2)]
vstore_docs = get_docs_from_vstore(vectorstore)
parent_vstore_meta_section = [doc.metadata['page_section'] for _, doc in vstore_docs]
#print(docs)
expanded_docs = []
for doc, score in docs:
search_section = doc.metadata['page_section']
search_index = parent_vstore_meta_section.index(search_section) if search_section in parent_vstore_meta_section else -1
content_str, meta_first, meta_last = get_parent_content_and_meta(vstore_docs, width, search_index)
#print("Meta first:")
#print(meta_first)
#print("Meta last:")
#print(meta_last)
#print("Meta last end.")
meta_full = merge_two_lists_of_dicts(meta_first, meta_last)
#print(meta_full)
expanded_doc = (Document(page_content=content_str[0], metadata=meta_full[0]), score)
expanded_docs.append(expanded_doc)
doc_df = create_doc_df(expanded_docs) # Assuming you've defined the 'create_doc_df' function elsewhere
return expanded_docs, doc_df
def create_final_prompt(inputs: Dict[str, str], instruction_prompt, content_prompt, extracted_memory): # ,
question = inputs["question"]
chat_history = inputs["chat_history"]
new_question_kworded = adapt_q_from_chat_history(question, chat_history, extracted_memory) # new_question_keywords,
#print("The question passed to the vector search is:")
#print(new_question_kworded)
#docs_keep_as_doc, docs_content, docs_url = find_relevant_passages(new_question_kworded, k_val = 5, out_passages = 3,
# vec_score_cut_off = 1.3, vec_weight = 1, tfidf_weight = 0.5, svm_weight = 1)
docs_keep_as_doc, doc_df, docs_keep_out = hybrid_retrieval(new_question_kworded, k_val = 5, out_passages = 2,
vec_score_cut_off = 1, vec_weight = 1, bm25_weight = 1, svm_weight = 1)#,
#vectorstore=globals()["vectorstore"], embeddings=globals()["embeddings"])
# Expand the found passages to the neighbouring context
docs_keep_as_doc, doc_df = get_expanded_passages(vectorstore, docs_keep_out, width=1)
if docs_keep_as_doc == []:
{"answer": "I'm sorry, I couldn't find a relevant answer to this question.", "sources":"I'm sorry, I couldn't find a relevant source for this question."}
#new_inputs = inputs.copy()
#new_inputs["question"] = new_question
#new_inputs["chat_history"] = chat_history_str
#print(docs_url)
#print(doc_df['metadata'])
# Build up sources content to add to user display
doc_df['meta_clean'] = [f"<b>{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}</b>" for d in doc_df['metadata']]
doc_df['content_meta'] = doc_df['meta_clean'].astype(str) + ".<br><br>" + doc_df['page_content'].astype(str)
modified_page_content = [f" SOURCE {i+1} - {word}" for i, word in enumerate(doc_df['page_content'])]
docs_content_string = ''.join(modified_page_content)
#docs_content_string = '<br><br>\n\n SOURCE '.join(doc_df['page_content'])#.replace(" "," ")#.strip()
sources_docs_content_string = '<br><br>'.join(doc_df['content_meta'])#.replace(" "," ")#.strip()
#sources_docs_content_tup = [(sources_docs_content,None)]
#print("The draft instruction prompt is:")
#print(instruction_prompt)
instruction_prompt_out = instruction_prompt.format(question=new_question_kworded, summaries=docs_content_string)
#print("The final instruction prompt:")
#print(instruction_prompt_out)
return instruction_prompt_out, sources_docs_content_string, new_question_kworded
def get_history_sources_final_input_prompt(user_input, history, extracted_memory):#):
#if chain_agent is None:
# history.append((user_input, "Please click the button to submit the Huggingface API key before using the chatbot (top right)"))
# return history, history, "", ""
print("\n==== date/time: " + str(datetime.datetime.now()) + " ====")
print("User input: " + user_input)
history = history or []
# Create instruction prompt
instruction_prompt, content_prompt = create_prompt_templates()
instruction_prompt_out, docs_content_string, new_question_kworded =\
create_final_prompt({"question": user_input, "chat_history": history}, #vectorstore,
instruction_prompt, content_prompt, extracted_memory)
history.append(user_input)
print("Output history is:")
print(history)
#print("The output prompt is:")
#print(instruction_prompt_out)
return history, docs_content_string, instruction_prompt_out
def highlight_found_text_single(search_text:str, full_text:str, hlt_chunk_size:int=hlt_chunk_size, hlt_strat:List=hlt_strat, hlt_overlap:int=hlt_overlap) -> str:
"""
Highlights occurrences of search_text within full_text.
Parameters:
- search_text (str): The text to be searched for within full_text.
- full_text (str): The text within which search_text occurrences will be highlighted.
Returns:
- str: A string with occurrences of search_text highlighted.
Example:
>>> highlight_found_text("world", "Hello, world! This is a test. Another world awaits.")
'Hello, <mark style="color:black;">world</mark>! This is a test. Another world awaits.'
"""
def extract_text_from_input(text,i=0):
if isinstance(text, str):
return text.replace(" ", " ").strip()#.replace("\r", " ").replace("\n", " ")
elif isinstance(text, list):
return text[i][0].replace(" ", " ").strip()#.replace("\r", " ").replace("\n", " ")
else:
return ""
def extract_search_text_from_input(text):
if isinstance(text, str):
return text.replace(" ", " ").strip()#.replace("\r", " ").replace("\n", " ").replace(" ", " ").strip()
elif isinstance(text, list):
return text[-1][1].replace(" ", " ").strip()#.replace("\r", " ").replace("\n", " ").replace(" ", " ").strip()
else:
return ""
full_text = extract_text_from_input(full_text)
search_text = extract_search_text_from_input(search_text)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=hlt_chunk_size,
separators=hlt_strat,
chunk_overlap=hlt_overlap,
)
sections = text_splitter.split_text(search_text)
#print(sections)
found_positions = {}
for x in sections:
text_start_pos = full_text.find(x)
if text_start_pos != -1:
found_positions[text_start_pos] = text_start_pos + len(x)
# Combine overlapping or adjacent positions
sorted_starts = sorted(found_positions.keys())
combined_positions = []
if sorted_starts:
current_start, current_end = sorted_starts[0], found_positions[sorted_starts[0]]
for start in sorted_starts[1:]:
if start <= (current_end + 1):
current_end = max(current_end, found_positions[start])
else:
combined_positions.append((current_start, current_end))
current_start, current_end = start, found_positions[start]
combined_positions.append((current_start, current_end))
# Construct pos_tokens
pos_tokens = []
prev_end = 0
for start, end in combined_positions:
pos_tokens.append(full_text[prev_end:start]) # ((full_text[prev_end:start], None))
pos_tokens.append('<mark style="color:black;">' + full_text[start:end] + '</mark>')# ("<mark>" + full_text[start:end] + "</mark>",'found')
prev_end = end
pos_tokens.append(full_text[prev_end:])
return "".join(pos_tokens)
def highlight_found_text(search_text: str, full_text: str, hlt_chunk_size:int=hlt_chunk_size, hlt_strat:List=hlt_strat, hlt_overlap:int=hlt_overlap) -> str:
"""
Highlights occurrences of search_text within full_text.
Parameters:
- search_text (str): The text to be searched for within full_text.
- full_text (str): The text within which search_text occurrences will be highlighted.
Returns:
- str: A string with occurrences of search_text highlighted.
Example:
>>> highlight_found_text("world", "Hello, world! This is a test. Another world awaits.")
'Hello, <mark style="color:black;">world</mark>! This is a test. Another <mark style="color:black;">world</mark> awaits.'
"""
def extract_text_from_input(text, i=0):
if isinstance(text, str):
return text.replace(" ", " ").strip()
elif isinstance(text, list):
return text[i][0].replace(" ", " ").strip()
else:
return ""
def extract_search_text_from_input(text):
if isinstance(text, str):
return text.replace(" ", " ").strip()
elif isinstance(text, list):
return text[-1][1].replace(" ", " ").strip()
else:
return ""
full_text = extract_text_from_input(full_text)
search_text = extract_search_text_from_input(search_text)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=hlt_chunk_size,
separators=hlt_strat,
chunk_overlap=hlt_overlap,
)
sections = text_splitter.split_text(search_text)
found_positions = {}
for x in sections:
text_start_pos = 0
while text_start_pos != -1:
text_start_pos = full_text.find(x, text_start_pos)
if text_start_pos != -1:
found_positions[text_start_pos] = text_start_pos + len(x)
text_start_pos += 1
# Combine overlapping or adjacent positions
sorted_starts = sorted(found_positions.keys())
combined_positions = []
if sorted_starts:
current_start, current_end = sorted_starts[0], found_positions[sorted_starts[0]]
for start in sorted_starts[1:]:
if start <= (current_end + 10):
current_end = max(current_end, found_positions[start])
else:
combined_positions.append((current_start, current_end))
current_start, current_end = start, found_positions[start]
combined_positions.append((current_start, current_end))
# Construct pos_tokens
pos_tokens = []
prev_end = 0
for start, end in combined_positions:
pos_tokens.append(full_text[prev_end:start])
pos_tokens.append('<mark style="color:black;">' + full_text[start:end] + '</mark>')
prev_end = end
pos_tokens.append(full_text[prev_end:])
return "".join(pos_tokens)
# # Chat functions
def produce_streaming_answer_chatbot_gpt4all(history, full_prompt):
print("The question is: ")
print(full_prompt)
# Pull the generated text from the streamer, and update the model output.
history[-1][1] = ""
for new_text in gpt4all_model.generate(full_prompt, max_tokens=2000, streaming=True):
if new_text == None: new_text = ""
history[-1][1] += new_text
yield history
def produce_streaming_answer_chatbot_hf(history, full_prompt):
#print("The question is: ")
#print(full_prompt)
# Get the model and tokenizer, and tokenize the user text.
model_inputs = tokenizer(text=full_prompt, return_tensors="pt").to(torch_device)
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
streamer = TextIteratorStreamer(tokenizer, timeout=60., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=sample,
repetition_penalty=1.3,
top_p=top_p,
temperature=temperature,
top_k=top_k
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Pull the generated text from the streamer, and update the model output.
import time
start = time.time()
NUM_TOKENS=0
print('-'*4+'Start Generation'+'-'*4)
history[-1][1] = ""
for new_text in streamer:
if new_text == None: new_text = ""
history[-1][1] += new_text
NUM_TOKENS+=1
yield history
time_generate = time.time() - start
print('\n')
print('-'*4+'End Generation'+'-'*4)
print(f'Num of generated tokens: {NUM_TOKENS}')
print(f'Time for complete generation: {time_generate}s')
print(f'Tokens per secound: {NUM_TOKENS/time_generate}')
print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms')
def produce_streaming_answer_chatbot_ctrans(history, full_prompt):
print("The question is: ")
print(full_prompt)
#tokens = ctrans_llm.tokenize(full_prompt)
#import psutil
#from loguru import logger
#_ = [elm for elm in full_prompt.splitlines() if elm.strip()]
#stop_string = [elm.split(":")[0] + ":" for elm in _][-2]
#print(stop_string)
#logger.debug(f"{stop_string=} not used")
#_ = psutil.cpu_count(logical=False) - 1
#cpu_count: int = int(_) if _ else 1
#logger.debug(f"{cpu_count=}")
# Pull the generated text from the streamer, and update the model output.
config = GenerationConfig(reset=True)
history[-1][1] = ""
for new_text in ctrans_generate(prompt=full_prompt, config=config):
if new_text == None: new_text = ""
history[-1][1] += new_text
yield history
@dataclass
class GenerationConfig:
temperature: float = temperature
top_k: int = top_k
top_p: float = top_p
repetition_penalty: float = repetition_penalty
last_n_tokens: int = last_n_tokens
max_new_tokens: int = max_new_tokens
#seed: int = 42
reset: bool = reset
stream: bool = stream
threads: int = threads
batch_size:int = batch_size
#context_length:int = context_length
#gpu_layers:int = gpu_layers
#stop: list[str] = field(default_factory=lambda: [stop_string])
def ctrans_generate(
prompt: str,
llm=ctrans_llm,
config: GenerationConfig = GenerationConfig(),
):
"""Run model inference, will return a Generator if streaming is true."""
return llm(
prompt,
**asdict(config),
)
def turn_off_interactivity(user_message, history):
return gr.update(value="", interactive=False), history + [[user_message, None]]
# # Chat history functions
def clear_chat(chat_history_state, sources, chat_message, current_topic):
chat_history_state = []
sources = ''
chat_message = ''
current_topic = ''
return chat_history_state, sources, chat_message, current_topic
def _get_chat_history(chat_history: List[Tuple[str, str]], max_chat_length:int = 20): # Limit to last x interactions only
if not chat_history:
chat_history = []
if len(chat_history) > max_chat_length:
chat_history = chat_history[-max_chat_length:]
#print(chat_history)
first_q = ""
first_ans = ""
for human_s, ai_s in chat_history:
first_q = human_s
first_ans = ai_s
#print("Text to keyword extract: " + first_q + " " + first_ans)
break
conversation = ""
for human_s, ai_s in chat_history:
human = f"Human: " + human_s
ai = f"Assistant: " + ai_s
conversation += "\n" + "\n".join([human, ai])
return conversation, first_q, first_ans, max_chat_length
def add_inputs_answer_to_history(user_message, history, current_topic):
#history.append((user_message, [-1]))
chat_history_str, chat_history_first_q, chat_history_first_ans, max_chat_length = _get_chat_history(history)
# Only get the keywords for the first question and response, or do it every time if over 'max_chat_length' responses in the conversation
if (len(history) == 1) | (len(history) > max_chat_length):
#print("History after appending is:")
#print(history)
first_q_and_first_ans = str(chat_history_first_q) + " " + str(chat_history_first_ans)
#ner_memory = remove_q_ner_extractor(first_q_and_first_ans)
keywords = keybert_keywords(first_q_and_first_ans, n = 8, kw_model=kw_model)
#keywords.append(ner_memory)
# Remove duplicate words while preserving order
ordered_tokens = set()
result = []
for word in keywords:
if word not in ordered_tokens:
ordered_tokens.add(word)
result.append(word)
extracted_memory = ' '.join(result)
else: extracted_memory=current_topic
print("Extracted memory is:")
print(extracted_memory)
return history, extracted_memory
def remove_q_stopwords(question): # Remove stopwords from question. Not used at the moment
# Prepare keywords from question by removing stopwords
text = question.lower()
# Remove numbers
text = re.sub('[0-9]', '', text)
tokenizer = RegexpTokenizer(r'\w+')
text_tokens = tokenizer.tokenize(text)
#text_tokens = word_tokenize(text)
tokens_without_sw = [word for word in text_tokens if not word in stopwords]
# Remove duplicate words while preserving order
ordered_tokens = set()
result = []
for word in tokens_without_sw:
if word not in ordered_tokens:
ordered_tokens.add(word)
result.append(word)
new_question_keywords = ' '.join(result)
return new_question_keywords
def remove_q_ner_extractor(question):
predict_out = ner_model.predict(question)
predict_tokens = [' '.join(v for k, v in d.items() if k == 'span') for d in predict_out]
# Remove duplicate words while preserving order
ordered_tokens = set()
result = []
for word in predict_tokens:
if word not in ordered_tokens:
ordered_tokens.add(word)
result.append(word)
new_question_keywords = ' '.join(result).lower()
return new_question_keywords
def apply_lemmatize(text, wnl=WordNetLemmatizer()):
def prep_for_lemma(text):
# Remove numbers
text = re.sub('[0-9]', '', text)
print(text)
tokenizer = RegexpTokenizer(r'\w+')
text_tokens = tokenizer.tokenize(text)
#text_tokens = word_tokenize(text)
return text_tokens
tokens = prep_for_lemma(text)
def lem_word(word):
if len(word) > 3: out_word = wnl.lemmatize(word)
else: out_word = word
return out_word
return [lem_word(token) for token in tokens]
def keybert_keywords(text, n, kw_model):
tokens_lemma = apply_lemmatize(text)
lemmatised_text = ' '.join(tokens_lemma)
keywords_text = keybert.KeyBERT(model=kw_model).extract_keywords(lemmatised_text, stop_words='english', top_n=n,
keyphrase_ngram_range=(1, 1))
keywords_list = [item[0] for item in keywords_text]
return keywords_list
|