File size: 12,708 Bytes
cff1674 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import gradio as gr
from .common_gui import get_folder_path, scriptdir, list_dirs, create_refresh_button
import shutil
import os
from .class_gui_config import KohyaSSGUIConfig
from .custom_logging import setup_logging
# Set up logging
log = setup_logging()
def copy_info_to_Folders_tab(training_folder):
img_folder = gr.Dropdown(value=os.path.join(training_folder, "img"))
if os.path.exists(os.path.join(training_folder, "reg")):
reg_folder = gr.Dropdown(value=os.path.join(training_folder, "reg"))
else:
reg_folder = gr.Dropdown(value="")
model_folder = gr.Dropdown(value=os.path.join(training_folder, "model"))
log_folder = gr.Dropdown(value=os.path.join(training_folder, "log"))
return img_folder, reg_folder, model_folder, log_folder
def dreambooth_folder_preparation(
util_training_images_dir_input,
util_training_images_repeat_input,
util_instance_prompt_input,
util_regularization_images_dir_input,
util_regularization_images_repeat_input,
util_class_prompt_input,
util_training_dir_output,
):
# Check if the input variables are empty
if not len(util_training_dir_output):
log.info(
"Destination training directory is missing... can't perform the required task..."
)
return
else:
# Create the util_training_dir_output directory if it doesn't exist
os.makedirs(util_training_dir_output, exist_ok=True)
# Check for instance prompt
if util_instance_prompt_input == "":
log.error("Instance prompt missing...")
return
# Check for class prompt
if util_class_prompt_input == "":
log.error("Class prompt missing...")
return
# Create the training_dir path
if util_training_images_dir_input == "":
log.info(
"Training images directory is missing... can't perform the required task..."
)
return
else:
training_dir = os.path.join(
util_training_dir_output,
f"img/{int(util_training_images_repeat_input)}_{util_instance_prompt_input} {util_class_prompt_input}",
)
# Remove folders if they exist
if os.path.exists(training_dir):
log.info(f"Removing existing directory {training_dir}...")
shutil.rmtree(training_dir)
# Copy the training images to their respective directories
log.info(f"Copy {util_training_images_dir_input} to {training_dir}...")
shutil.copytree(util_training_images_dir_input, training_dir)
if not util_regularization_images_dir_input == "":
# Create the regularization_dir path
if not util_regularization_images_repeat_input > 0:
log.info("Repeats is missing... not copying regularisation images...")
else:
regularization_dir = os.path.join(
util_training_dir_output,
f"reg/{int(util_regularization_images_repeat_input)}_{util_class_prompt_input}",
)
# Remove folders if they exist
if os.path.exists(regularization_dir):
log.info(f"Removing existing directory {regularization_dir}...")
shutil.rmtree(regularization_dir)
# Copy the regularisation images to their respective directories
log.info(
f"Copy {util_regularization_images_dir_input} to {regularization_dir}..."
)
shutil.copytree(util_regularization_images_dir_input, regularization_dir)
else:
log.info(
"Regularization images directory is missing... not copying regularisation images..."
)
# create log and model folder
# Check if the log folder exists and create it if it doesn't
if not os.path.exists(os.path.join(util_training_dir_output, "log")):
os.makedirs(os.path.join(util_training_dir_output, "log"))
# Check if the model folder exists and create it if it doesn't
if not os.path.exists(os.path.join(util_training_dir_output, "model")):
os.makedirs(os.path.join(util_training_dir_output, "model"))
log.info(
f"Done creating kohya_ss training folder structure at {util_training_dir_output}..."
)
def gradio_dreambooth_folder_creation_tab(
config: KohyaSSGUIConfig,
train_data_dir_input=gr.Dropdown(),
reg_data_dir_input=gr.Dropdown(),
output_dir_input=gr.Dropdown(),
logging_dir_input=gr.Dropdown(),
headless=False,
):
current_train_data_dir = os.path.join(scriptdir, "data")
current_reg_data_dir = os.path.join(scriptdir, "data")
current_train_output_dir = os.path.join(scriptdir, "data")
with gr.Tab("Dreambooth/LoRA Folder preparation"):
gr.Markdown(
"This utility will create the necessary folder structure for the training images and optional regularization images needed for the kohys_ss Dreambooth/LoRA method to function correctly."
)
with gr.Row():
util_instance_prompt_input = gr.Textbox(
label="Instance prompt",
placeholder="Eg: asd",
interactive=True,
value=config.get(key="dataset_preparation.instance_prompt", default=""),
)
util_class_prompt_input = gr.Textbox(
label="Class prompt",
placeholder="Eg: person",
interactive=True,
value=config.get(key="dataset_preparation.class_prompt", default=""),
)
with gr.Group(), gr.Row():
def list_train_data_dirs(path):
nonlocal current_train_data_dir
current_train_data_dir = path
return list(list_dirs(path))
util_training_images_dir_input = gr.Dropdown(
label="Training images (directory containing the training images)",
interactive=True,
choices=[
config.get(key="dataset_preparation.images_folder", default="")
]
+ list_train_data_dirs(current_train_data_dir),
value=config.get(key="dataset_preparation.images_folder", default=""),
allow_custom_value=True,
)
create_refresh_button(
util_training_images_dir_input,
lambda: None,
lambda: {"choices": list_train_data_dirs(current_train_data_dir)},
"open_folder_small",
)
button_util_training_images_dir_input = gr.Button(
"π",
elem_id="open_folder_small",
elem_classes=["tool"],
visible=(not headless),
)
button_util_training_images_dir_input.click(
get_folder_path,
outputs=util_training_images_dir_input,
show_progress=False,
)
util_training_images_repeat_input = gr.Number(
label="Repeats",
value=config.get(key="dataset_preparation.util_training_images_repeat_input", default=40),
interactive=True,
elem_id="number_input",
)
util_training_images_dir_input.change(
fn=lambda path: gr.Dropdown(choices=[config.get(key="dataset_preparation.images_folder", default="")] + list_train_data_dirs(path)),
inputs=util_training_images_dir_input,
outputs=util_training_images_dir_input,
show_progress=False,
)
with gr.Group(), gr.Row():
def list_reg_data_dirs(path):
nonlocal current_reg_data_dir
current_reg_data_dir = path
return list(list_dirs(path))
util_regularization_images_dir_input = gr.Dropdown(
label="Regularisation images (Optional. directory containing the regularisation images)",
interactive=True,
choices=[
config.get(key="dataset_preparation.reg_images_folder", default="")
]
+ list_reg_data_dirs(current_reg_data_dir),
value=config.get(
key="dataset_preparation.reg_images_folder", default=""
),
allow_custom_value=True,
)
create_refresh_button(
util_regularization_images_dir_input,
lambda: None,
lambda: {"choices": list_reg_data_dirs(current_reg_data_dir)},
"open_folder_small",
)
button_util_regularization_images_dir_input = gr.Button(
"π",
elem_id="open_folder_small",
elem_classes=["tool"],
visible=(not headless),
)
button_util_regularization_images_dir_input.click(
get_folder_path,
outputs=util_regularization_images_dir_input,
show_progress=False,
)
util_regularization_images_repeat_input = gr.Number(
label="Repeats",
value=config.get(
key="dataset_preparation.util_regularization_images_repeat_input",
default=1
),
interactive=True,
elem_id="number_input",
)
util_regularization_images_dir_input.change(
fn=lambda path: gr.Dropdown(choices=[""] + list_reg_data_dirs(path)),
inputs=util_regularization_images_dir_input,
outputs=util_regularization_images_dir_input,
show_progress=False,
)
with gr.Group(), gr.Row():
def list_train_output_dirs(path):
nonlocal current_train_output_dir
current_train_output_dir = path
return list(list_dirs(path))
util_training_dir_output = gr.Dropdown(
label="Destination training directory (where formatted training and regularisation folders will be placed)",
interactive=True,
choices=[config.get(key="train_data_dir", default="")]
+ list_train_output_dirs(current_train_output_dir),
value=config.get(key="train_data_dir", default=""),
allow_custom_value=True,
)
create_refresh_button(
util_training_dir_output,
lambda: None,
lambda: {"choices": list_train_output_dirs(current_train_output_dir)},
"open_folder_small",
)
button_util_training_dir_output = gr.Button(
"π",
elem_id="open_folder_small",
elem_classes=["tool"],
visible=(not headless),
)
button_util_training_dir_output.click(
get_folder_path, outputs=util_training_dir_output
)
util_training_dir_output.change(
fn=lambda path: gr.Dropdown(
choices=[config.get(key="train_data_dir", default="")] + list_train_output_dirs(path)
),
inputs=util_training_dir_output,
outputs=util_training_dir_output,
show_progress=False,
)
button_prepare_training_data = gr.Button("Prepare training data")
button_prepare_training_data.click(
dreambooth_folder_preparation,
inputs=[
util_training_images_dir_input,
util_training_images_repeat_input,
util_instance_prompt_input,
util_regularization_images_dir_input,
util_regularization_images_repeat_input,
util_class_prompt_input,
util_training_dir_output,
],
show_progress=False,
)
button_copy_info_to_Folders_tab = gr.Button('Copy info to respective fields')
button_copy_info_to_Folders_tab.click(
copy_info_to_Folders_tab,
inputs=[util_training_dir_output],
outputs=[
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
logging_dir_input,
],
show_progress=False,
)
|