import gradio as gr import subprocess import os import sys from .common_gui import ( get_saveasfilename_path, get_file_path, scriptdir, list_files, create_refresh_button, setup_environment ) from .custom_logging import setup_logging # Set up logging log = setup_logging() folder_symbol = "\U0001f4c2" # 📂 refresh_symbol = "\U0001f504" # 🔄 save_style_symbol = "\U0001f4be" # 💾 document_symbol = "\U0001F4C4" # 📄 PYTHON = sys.executable def svd_merge_lora( lora_a_model, lora_b_model, lora_c_model, lora_d_model, ratio_a, ratio_b, ratio_c, ratio_d, save_to, precision, save_precision, new_rank, new_conv_rank, device, ): # Check if the output file already exists if os.path.isfile(save_to): log.info(f"Output file '{save_to}' already exists. Aborting.") return # Check if the ratio total is equal to one. If not normalise to 1 total_ratio = ratio_a + ratio_b + ratio_c + ratio_d if total_ratio != 1: ratio_a /= total_ratio ratio_b /= total_ratio ratio_c /= total_ratio ratio_d /= total_ratio run_cmd = [ rf"{PYTHON}", rf"{scriptdir}/sd-scripts/networks/svd_merge_lora.py", "--save_precision", save_precision, "--precision", precision, "--save_to", save_to, ] # Variables for model paths and their ratios models = [] ratios = [] # Add non-empty models and their ratios to the command def add_model(model_path, ratio): if not os.path.isfile(model_path): log.info(f"The provided model at {model_path} is not a file") return False models.append(fr"{model_path}") ratios.append(str(ratio)) return True if lora_a_model and add_model(lora_a_model, ratio_a): pass if lora_b_model and add_model(lora_b_model, ratio_b): pass if lora_c_model and add_model(lora_c_model, ratio_c): pass if lora_d_model and add_model(lora_d_model, ratio_d): pass if models and ratios: # Ensure we have valid models and ratios before appending run_cmd.extend(["--models"] + models) run_cmd.extend(["--ratios"] + ratios) run_cmd.extend( ["--device", device, "--new_rank", str(new_rank), "--new_conv_rank", str(new_conv_rank)] ) # Log the command log.info(" ".join(run_cmd)) env = setup_environment() # Run the command subprocess.run(run_cmd, env=env) ### # Gradio UI ### def gradio_svd_merge_lora_tab(headless=False): current_save_dir = os.path.join(scriptdir, "outputs") current_a_model_dir = current_save_dir current_b_model_dir = current_save_dir current_c_model_dir = current_save_dir current_d_model_dir = current_save_dir def list_a_models(path): nonlocal current_a_model_dir current_a_model_dir = path return list(list_files(path, exts=[".pt", ".safetensors"], all=True)) def list_b_models(path): nonlocal current_b_model_dir current_b_model_dir = path return list(list_files(path, exts=[".pt", ".safetensors"], all=True)) def list_c_models(path): nonlocal current_c_model_dir current_c_model_dir = path return list(list_files(path, exts=[".pt", ".safetensors"], all=True)) def list_d_models(path): nonlocal current_d_model_dir current_d_model_dir = path return list(list_files(path, exts=[".pt", ".safetensors"], all=True)) def list_save_to(path): nonlocal current_save_dir current_save_dir = path return list(list_files(path, exts=[".pt", ".safetensors"], all=True)) with gr.Tab("Merge LoRA (SVD)"): gr.Markdown( "This utility can merge two LoRA networks together into a new LoRA." ) lora_ext = gr.Textbox(value="*.safetensors *.pt", visible=False) lora_ext_name = gr.Textbox(value="LoRA model types", visible=False) with gr.Group(), gr.Row(): lora_a_model = gr.Dropdown( label='LoRA model "A" (path to the LoRA A model)', interactive=True, choices=[""] + list_a_models(current_a_model_dir), value="", allow_custom_value=True, ) create_refresh_button( lora_a_model, lambda: None, lambda: {"choices": list_a_models(current_a_model_dir)}, "open_folder_small", ) button_lora_a_model_file = gr.Button( folder_symbol, elem_id="open_folder_small", elem_classes=["tool"], visible=(not headless), ) button_lora_a_model_file.click( get_file_path, inputs=[lora_a_model, lora_ext, lora_ext_name], outputs=lora_a_model, show_progress=False, ) lora_b_model = gr.Dropdown( label='LoRA model "B" (path to the LoRA B model)', interactive=True, choices=[""] + list_b_models(current_b_model_dir), value="", allow_custom_value=True, ) create_refresh_button( lora_b_model, lambda: None, lambda: {"choices": list_b_models(current_b_model_dir)}, "open_folder_small", ) button_lora_b_model_file = gr.Button( folder_symbol, elem_id="open_folder_small", elem_classes=["tool"], visible=(not headless), ) button_lora_b_model_file.click( get_file_path, inputs=[lora_b_model, lora_ext, lora_ext_name], outputs=lora_b_model, show_progress=False, ) lora_a_model.change( fn=lambda path: gr.Dropdown(choices=[""] + list_a_models(path)), inputs=lora_a_model, outputs=lora_a_model, show_progress=False, ) lora_b_model.change( fn=lambda path: gr.Dropdown(choices=[""] + list_b_models(path)), inputs=lora_b_model, outputs=lora_b_model, show_progress=False, ) with gr.Row(): ratio_a = gr.Slider( label="Merge ratio model A", minimum=0, maximum=1, step=0.01, value=0.25, interactive=True, ) ratio_b = gr.Slider( label="Merge ratio model B", minimum=0, maximum=1, step=0.01, value=0.25, interactive=True, ) with gr.Group(), gr.Row(): lora_c_model = gr.Dropdown( label='LoRA model "C" (path to the LoRA C model)', interactive=True, choices=[""] + list_c_models(current_c_model_dir), value="", allow_custom_value=True, ) create_refresh_button( lora_c_model, lambda: None, lambda: {"choices": list_c_models(current_c_model_dir)}, "open_folder_small", ) button_lora_c_model_file = gr.Button( folder_symbol, elem_id="open_folder_small", elem_classes=["tool"], visible=(not headless), ) button_lora_c_model_file.click( get_file_path, inputs=[lora_c_model, lora_ext, lora_ext_name], outputs=lora_c_model, show_progress=False, ) lora_d_model = gr.Dropdown( label='LoRA model "D" (path to the LoRA D model)', interactive=True, choices=[""] + list_d_models(current_d_model_dir), value="", allow_custom_value=True, ) create_refresh_button( lora_d_model, lambda: None, lambda: {"choices": list_d_models(current_d_model_dir)}, "open_folder_small", ) button_lora_d_model_file = gr.Button( folder_symbol, elem_id="open_folder_small", elem_classes=["tool"], visible=(not headless), ) button_lora_d_model_file.click( get_file_path, inputs=[lora_d_model, lora_ext, lora_ext_name], outputs=lora_d_model, show_progress=False, ) lora_c_model.change( fn=lambda path: gr.Dropdown(choices=[""] + list_c_models(path)), inputs=lora_c_model, outputs=lora_c_model, show_progress=False, ) lora_d_model.change( fn=lambda path: gr.Dropdown(choices=[""] + list_d_models(path)), inputs=lora_d_model, outputs=lora_d_model, show_progress=False, ) with gr.Row(): ratio_c = gr.Slider( label="Merge ratio model C", minimum=0, maximum=1, step=0.01, value=0.25, interactive=True, ) ratio_d = gr.Slider( label="Merge ratio model D", minimum=0, maximum=1, step=0.01, value=0.25, interactive=True, ) with gr.Row(): new_rank = gr.Slider( label="New Rank", minimum=1, maximum=1024, step=1, value=128, interactive=True, ) new_conv_rank = gr.Slider( label="New Conv Rank", minimum=1, maximum=1024, step=1, value=128, interactive=True, ) with gr.Group(), gr.Row(): save_to = gr.Dropdown( label="Save to (path for the new LoRA file to save...)", interactive=True, choices=[""] + list_save_to(current_d_model_dir), value="", allow_custom_value=True, ) create_refresh_button( save_to, lambda: None, lambda: {"choices": list_save_to(current_save_dir)}, "open_folder_small", ) button_save_to = gr.Button( folder_symbol, elem_id="open_folder_small", elem_classes=["tool"], visible=(not headless), ) button_save_to.click( get_saveasfilename_path, inputs=[save_to, lora_ext, lora_ext_name], outputs=save_to, show_progress=False, ) save_to.change( fn=lambda path: gr.Dropdown(choices=[""] + list_save_to(path)), inputs=save_to, outputs=save_to, show_progress=False, ) with gr.Group(), gr.Row(): precision = gr.Radio( label="Merge precision", choices=["fp16", "bf16", "float"], value="float", interactive=True, ) save_precision = gr.Radio( label="Save precision", choices=["fp16", "bf16", "float"], value="float", interactive=True, ) device = gr.Radio( label="Device", choices=[ "cpu", "cuda", ], value="cuda", interactive=True, ) convert_button = gr.Button("Merge model") convert_button.click( svd_merge_lora, inputs=[ lora_a_model, lora_b_model, lora_c_model, lora_d_model, ratio_a, ratio_b, ratio_c, ratio_d, save_to, precision, save_precision, new_rank, new_conv_rank, device, ], show_progress=False, )