Spaces:
Sleeping
Sleeping
initial commit
Browse files- accord_logo.png +0 -0
- app.py +12 -14
accord_logo.png
ADDED
![]() |
app.py
CHANGED
@@ -1,9 +1,12 @@
|
|
1 |
# Created by Hansi at 30/08/2023
|
|
|
|
|
2 |
import nltk
|
3 |
nltk.download('punkt')
|
4 |
nltk.download('averaged_perceptron_tagger')
|
5 |
|
6 |
import streamlit as st
|
|
|
7 |
from accord_nlp.information_extraction.convertor import entity_pairing, graph_building
|
8 |
from accord_nlp.information_extraction.ie_pipeline import InformationExtractor
|
9 |
|
@@ -17,6 +20,7 @@ re_args = {
|
|
17 |
"labels_list": ["selection", "necessity", "none", "greater", "part-of", "equal", "greater-equal", "less-equal", "not-part-of", "less"],
|
18 |
"special_tags": ["<e1>", "<e2>"], # Should be either begin_tag or end_tag
|
19 |
"use_multiprocessing": False,
|
|
|
20 |
}
|
21 |
|
22 |
@st.cache_resource
|
@@ -37,8 +41,12 @@ with st.spinner(text="Initialising..."):
|
|
37 |
|
38 |
|
39 |
def main():
|
40 |
-
|
41 |
-
st.sidebar.
|
|
|
|
|
|
|
|
|
42 |
st.sidebar.markdown(
|
43 |
"[code](https://github.com/Accord-Project/NLP-Framework)"
|
44 |
)
|
@@ -47,39 +55,29 @@ def main():
|
|
47 |
|
48 |
txt = st.text_area('Sentence')
|
49 |
|
50 |
-
# st.write(txt)
|
51 |
-
|
52 |
-
# with st.spinner(text="Processing..."):
|
53 |
-
# graph = ie.sentence_to_graph(txt)
|
54 |
-
|
55 |
if txt:
|
56 |
# preprocess
|
57 |
sentence = ie.preprocess(txt)
|
58 |
-
st.write(sentence)
|
59 |
|
60 |
# NER
|
61 |
with st.spinner(text="Recognising entities..."):
|
62 |
ner_predictions, ner_raw_outputs = ie.ner_model.predict([sentence])
|
63 |
|
64 |
-
st.write(ner_predictions)
|
65 |
-
|
66 |
with st.spinner(text="Extracting relations..."):
|
67 |
# pair entities to predict their relations
|
68 |
entity_pair_df = entity_pairing(sentence, ner_predictions[0])
|
69 |
-
# st.write('entity paired')
|
70 |
|
71 |
# relation extraction
|
72 |
re_predictions, re_raw_outputs = ie.re_model.predict(entity_pair_df['output'].tolist())
|
73 |
entity_pair_df['prediction'] = re_predictions
|
74 |
-
# st.write(re_predictions)
|
75 |
|
76 |
with st.spinner(text="Building graph..."):
|
77 |
# build graph
|
78 |
graph = graph_building(entity_pair_df, view=False)
|
79 |
-
# st.success()
|
80 |
|
81 |
st.header('Entity-Relation Representation')
|
82 |
-
st.graphviz_chart(graph)
|
|
|
83 |
|
84 |
|
85 |
if __name__ == '__main__':
|
|
|
1 |
# Created by Hansi at 30/08/2023
|
2 |
+
import os
|
3 |
+
|
4 |
import nltk
|
5 |
nltk.download('punkt')
|
6 |
nltk.download('averaged_perceptron_tagger')
|
7 |
|
8 |
import streamlit as st
|
9 |
+
from PIL import Image
|
10 |
from accord_nlp.information_extraction.convertor import entity_pairing, graph_building
|
11 |
from accord_nlp.information_extraction.ie_pipeline import InformationExtractor
|
12 |
|
|
|
20 |
"labels_list": ["selection", "necessity", "none", "greater", "part-of", "equal", "greater-equal", "less-equal", "not-part-of", "less"],
|
21 |
"special_tags": ["<e1>", "<e2>"], # Should be either begin_tag or end_tag
|
22 |
"use_multiprocessing": False,
|
23 |
+
"process_count": 1
|
24 |
}
|
25 |
|
26 |
@st.cache_resource
|
|
|
41 |
|
42 |
|
43 |
def main():
|
44 |
+
image = Image.open(os.path.join(os.path.dirname(__file__), 'accord_logo.png'))
|
45 |
+
st.sidebar.image(image)
|
46 |
+
|
47 |
+
# st.sidebar.title("ACCORD-NLP")
|
48 |
+
st.sidebar.header("Information Extractor")
|
49 |
+
st.sidebar.markdown("Extract entities and their relations from textual data")
|
50 |
st.sidebar.markdown(
|
51 |
"[code](https://github.com/Accord-Project/NLP-Framework)"
|
52 |
)
|
|
|
55 |
|
56 |
txt = st.text_area('Sentence')
|
57 |
|
|
|
|
|
|
|
|
|
|
|
58 |
if txt:
|
59 |
# preprocess
|
60 |
sentence = ie.preprocess(txt)
|
|
|
61 |
|
62 |
# NER
|
63 |
with st.spinner(text="Recognising entities..."):
|
64 |
ner_predictions, ner_raw_outputs = ie.ner_model.predict([sentence])
|
65 |
|
|
|
|
|
66 |
with st.spinner(text="Extracting relations..."):
|
67 |
# pair entities to predict their relations
|
68 |
entity_pair_df = entity_pairing(sentence, ner_predictions[0])
|
|
|
69 |
|
70 |
# relation extraction
|
71 |
re_predictions, re_raw_outputs = ie.re_model.predict(entity_pair_df['output'].tolist())
|
72 |
entity_pair_df['prediction'] = re_predictions
|
|
|
73 |
|
74 |
with st.spinner(text="Building graph..."):
|
75 |
# build graph
|
76 |
graph = graph_building(entity_pair_df, view=False)
|
|
|
77 |
|
78 |
st.header('Entity-Relation Representation')
|
79 |
+
# st.graphviz_chart(graph)
|
80 |
+
st.graphviz_chart(graph, use_container_width=True)
|
81 |
|
82 |
|
83 |
if __name__ == '__main__':
|