robertselvam commited on
Commit
10de3c4
·
verified ·
1 Parent(s): 74ffdc6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -48
app.py CHANGED
@@ -23,7 +23,6 @@ import re
23
  nltk.download('punkt')
24
  nltk.download('stopwords')
25
 
26
-
27
  class VideoAnalytics:
28
  """
29
  Class for performing analytics on videos including transcription, summarization, topic generation,
@@ -425,8 +424,7 @@ class VideoAnalytics:
425
  return prompt+prompt1
426
 
427
 
428
- def generate(self, task: str,temperature=0.9, max_new_tokens=5000, top_p=0.95,
429
- repetition_penalty=1.0) -> str:
430
  """
431
  Generates text based on the prompt and transcribed text.
432
  Args:
@@ -439,31 +437,36 @@ class VideoAnalytics:
439
  Returns:
440
  str: Generated text.
441
  """
442
- try:
443
- temperature = float(temperature)
444
- if temperature < 1e-2:
445
- temperature = 1e-2
446
- top_p = float(top_p)
447
-
448
- generate_kwargs = dict(
449
- temperature=temperature,
450
- max_new_tokens=max_new_tokens,
451
- top_p=top_p,
452
- repetition_penalty=repetition_penalty,
453
- do_sample=True,
454
- seed=42,
455
- )
456
-
457
- # Generate text using the mistral client
458
- stream = self.mistral_client.text_generation(task, **generate_kwargs, stream=True, details=True, return_full_text=False)
459
- output = ""
460
- # Concatenate generated text
461
- for response in stream:
462
- output += response.token.text
463
- return output.replace("</s>","")
464
- except Exception as e:
465
- logging.error(f"Error in text generation: {e}")
466
- return "An error occurred during text generation."
 
 
 
 
 
467
 
468
  def video_qa(self, question: str, model: str) -> str:
469
  """
@@ -474,26 +477,26 @@ class VideoAnalytics:
474
  Returns:
475
  str: Answer to the user's question.
476
  """
477
- try:
478
- if model == "OpenAI":
479
- template = """you are the universal language expert .your task is analyze the given text and user ask any question about given text answer to the user question.otherwise reply i don't know.
480
- english_text:{text}
481
- user_question:{question}"""
482
-
483
- prompt = PromptTemplate(template=template, input_variables=["text","question"])
484
- llm_chain = LLMChain(prompt=prompt, verbose=True, llm=self.openai_llm)
485
-
486
- # Run the language model chain
487
- result = llm_chain.run({"text":self.english_text,"question":question})
 
 
 
 
 
488
  return result
489
-
490
- elif model == "Mixtral":
491
- # Generate answer using Mixtral model
492
- result = self.generate(question,self.english_text)
493
- return result
494
- except Exception as e:
495
- logging.error(f"Error in video question answering: {e}")
496
- return "An error occurred during video question answering."
497
 
498
 
499
  def write_text_files(self, text: str, filename: str) -> None:
@@ -658,7 +661,7 @@ class VideoAnalytics:
658
  result = gr.Textbox(label='Answer',lines=10)
659
  submit_btn.click(self.main,[video,yt_link,model_selection],[summary,Important_Sentences,Topics,summary_audio,important_sentence_audio,topics_audio])
660
  question.submit(self.video_qa,[question,model],result)
661
- demo.launch()
662
 
663
  if __name__ == "__main__":
664
  video_analytics = VideoAnalytics()
 
23
  nltk.download('punkt')
24
  nltk.download('stopwords')
25
 
 
26
  class VideoAnalytics:
27
  """
28
  Class for performing analytics on videos including transcription, summarization, topic generation,
 
424
  return prompt+prompt1
425
 
426
 
427
+ def generate(self, question: str) -> str:
 
428
  """
429
  Generates text based on the prompt and transcribed text.
430
  Args:
 
437
  Returns:
438
  str: Generated text.
439
  """
440
+ # try:
441
+ temperature=0.9
442
+ max_new_tokens=5000
443
+ top_p=0.95
444
+ repetition_penalty=1.0
445
+
446
+ temperature = float(temperature)
447
+ if temperature < 1e-2:
448
+ temperature = 1e-2
449
+ top_p = float(top_p)
450
+
451
+ generate_kwargs = dict(
452
+ temperature=temperature,
453
+ max_new_tokens=max_new_tokens,
454
+ top_p=top_p,
455
+ repetition_penalty=repetition_penalty,
456
+ do_sample=True,
457
+ seed=42,
458
+ )
459
+ prompt = self.format_prompt(question, self.english_text)
460
+ # Generate text using the mistral client
461
+ stream = self.mistral_client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
462
+ output = ""
463
+ # Concatenate generated text
464
+ for response in stream:
465
+ output += response.token.text
466
+ return output.replace("</s>","")
467
+ # except Exception as e:
468
+ # logging.error(f"Error in text generation: {e}")
469
+ # return "An error occurred during text generation."
470
 
471
  def video_qa(self, question: str, model: str) -> str:
472
  """
 
477
  Returns:
478
  str: Answer to the user's question.
479
  """
480
+ # try:
481
+ if model == "OpenAI":
482
+ template = """you are the universal language expert .your task is analyze the given text and user ask any question about given text answer to the user question.otherwise reply i don't know.
483
+ english_text:{text}
484
+ user_question:{question}"""
485
+
486
+ prompt = PromptTemplate(template=template, input_variables=["text","question"])
487
+ llm_chain = LLMChain(prompt=prompt, verbose=True, llm=self.openai_llm)
488
+
489
+ # Run the language model chain
490
+ result = llm_chain.run({"text":self.english_text,"question":question})
491
+ return result
492
+
493
+ elif model == "Mixtral":
494
+ # Generate answer using Mixtral model
495
+ result = self.generate(question)
496
  return result
497
+ # except Exception as e:
498
+ # logging.error(f"Error in video question answering: {e}")
499
+ # return "An error occurred during video question answering."
 
 
 
 
 
500
 
501
 
502
  def write_text_files(self, text: str, filename: str) -> None:
 
661
  result = gr.Textbox(label='Answer',lines=10)
662
  submit_btn.click(self.main,[video,yt_link,model_selection],[summary,Important_Sentences,Topics,summary_audio,important_sentence_audio,topics_audio])
663
  question.submit(self.video_qa,[question,model],result)
664
+ demo.launch(debug=True)
665
 
666
  if __name__ == "__main__":
667
  video_analytics = VideoAnalytics()