Spaces:
Running
Running
######################################################################################### | |
# Title: German AI-Interface with advanced RAG | |
# Author: Andreas Fischer | |
# Date: January 31st, 2023 | |
# Last update: February 21st, 2024 | |
########################################################################################## | |
#https://github.com/abetlen/llama-cpp-python/issues/306 | |
#sudo apt install libclblast-dev | |
#CMAKE_ARGS="-DLLAMA_CLBLAST=on" FORCE_CMAKE=1 pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir -v | |
# Prepare resources | |
#------------------- | |
import torch | |
import gc | |
torch.cuda.empty_cache() | |
gc.collect() | |
import os | |
from datetime import datetime | |
global filename | |
filename=f"./{datetime.now().strftime('%Y%m%d')}_history.json" # where to store the history as json-file | |
if(os.path.exists(filename)==True): os.remove(filename) | |
# Chroma-DB | |
#----------- | |
import os | |
import chromadb | |
dbPath = "/home/af/Schreibtisch/Code/gradio/Chroma/db" | |
onPrem = True if(os.path.exists(dbPath)) else False | |
if(onPrem==False): dbPath="/home/user/app/db" | |
onPrem=False | |
print(dbPath) | |
#client = chromadb.Client() | |
path=dbPath | |
client = chromadb.PersistentClient(path=path) | |
print(client.heartbeat()) | |
print(client.get_version()) | |
print(client.list_collections()) | |
from chromadb.utils import embedding_functions | |
default_ef = embedding_functions.DefaultEmbeddingFunction() | |
#sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer") | |
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda") | |
embeddingModel = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer", device="cuda" if(onPrem) else "cpu") | |
print(str(client.list_collections())) | |
global collection | |
dbName="myDB" | |
if("name="+dbName in str(client.list_collections())): client.delete_collection(name=dbName) | |
if("name="+dbName in str(client.list_collections())): | |
print(dbName+" found!") | |
collection = client.get_collection(name=dbName, embedding_function=embeddingModel ) | |
else: | |
print(dbName+" created!") | |
collection = client.create_collection( | |
dbName, | |
embedding_function=embeddingModel, | |
metadata={"hnsw:space": "cosine"}) | |
# txts0: Intentions | |
#------------------ | |
txts0=[ | |
"Ich suche ein KI-Programm mit bestimmten Fähigkeiten.", # 1a | |
#"Ich suche kein KI-Programm mit bestimmten Fähigkeiten.", # !1a | |
"Ich habe ein KI-Programm und habe Fragen zur Benutzung.", # !1a (besser, um 1a und 1b abzugrenzen) | |
"Ich habe ein KI-Programm und habe Fragen zur Benutzung.", # 1b | |
#"Ich habe kein KI-Programm und habe keine Fragen zur Benutzung.", # !1b | |
"Ich habe eine allgemeine Frage ohne KI-Bezug." # !1b (greift besser bei Alltagsfragen) | |
] | |
# txts1a: RAG-Infos for first intention: | |
#--------------------------------------- | |
txts1a=[ | |
"Text generating AI model mistralai/Mixtral-8x7B-Instruct-v0.1: Suitable for text generation, e.g., social media content, marketing copy, blog posts, short stories, etc.", | |
"Image generating AI model stabilityai/sdxl-turbo: Suitable for image generation, e.g., illustrations, graphics, AI art, etc.", | |
"Audio transcribing AI model openai/whisper-large-v3: Suitable for audio-transcription in different languages", | |
"Speech synthesizing AI model coqui/XTTS-v2: Suitable for generating audio from text and for voice-cloning", | |
"Code generating AI model deepseek-ai/deepseek-coder-6.7b-instruct: Suitable for programming in Python, JavaScript, PHP, Bash and many other programming languages.", | |
"Translation AI model Helsinki-NLP/opus-mt: Suitable for translating text, e.g., from English to German or vice versa", | |
"Search result-integrating AI model phind/phind-v9-model: Suitable for researching current topics and for obtaining precise and up-to-date answers to questions based on web search results" | |
] | |
# txts1b: RAG-Infos for second intention | |
#---------------------------------------- | |
txts1b=[ | |
"Für Fragen zur Umsetzung von KI-Verfahren ist das KI-basierte Assistenzsystem nicht geeignet. Möglicherweise empfiehlt sich ein KI-Modell mit Internetzugriff, wie beispielsweise phind.com, oder das Kontaktieren eines Experten wie Dr. Andreas Fischer (andreasfischer1985@web.de)." | |
] | |
#meta=[{"type":"0", "type2":"0","source":"AF"}]*len(txts0)+[{"type":"1a","type2":"0","source":"AF"}]*len(txts1a)+[{"type":"1b","type2":"0","source":"AF"}]*len(txts1b) | |
meta = [] | |
for _ in range(len(txts0)): | |
meta.append({"type":"0", "type2":"0","source":"AF"}) | |
for _ in range(len(txts1a)): | |
meta.append({"type":"1a","type2":"0","source":"AF"}) | |
for _ in range(len(txts1b)): | |
meta.append({"type":"1b","type2":"0","source":"AF"}) | |
#Change type2 for txt0-entries | |
#----------------------------- | |
meta[0]["type2"]="1a" # RAG mit txts1a | |
meta[1]["type2"]="!1a" # else | |
meta[2]["type2"]="1b" # RAG mit txts1b | |
meta[3]["type2"]="!1b" # else | |
txts=txts0+txts1a+txts1b | |
collection.add( | |
documents=txts, | |
ids=[str(i) for i in list(range(len(txts)))], | |
metadatas=meta | |
) | |
# Add entry to episodic memory | |
x=collection.get(include=[])["ids"] | |
if(True): #len(x)==0): | |
message="Ich bin der User." | |
response="Hallo User, wie kann ich dienen?" | |
x=collection.get(include=[])["ids"] | |
collection.add( | |
documents=[message,response], | |
metadatas=[ | |
{"source": "ICH", "dialog": f"ICH: {message}\nDU: {response}", "type":"episode"}, | |
{"source": "DU", "dialog": f"ICH: {message}\nDU: {response}", "type":"episode"} | |
], | |
ids=[str(len(x)+1),str(len(x)+2)] | |
) | |
RAGResults=collection.query( | |
query_texts=[message], | |
n_results=1, | |
#where={"source": "USER"} | |
) | |
RAGResults["metadatas"][0][0]["dialog"] | |
x=collection.get(include=[])["ids"] | |
x | |
collection.get() # Inspect db-entries | |
print("Database ready!") | |
print(collection.count()) | |
rag0=collection.query( | |
query_texts=[message], | |
n_results=4, | |
where={"type": "0"} | |
) | |
x=rag0["metadatas"][0][0]["type2"] | |
x=[x["type2"] for x in rag0["metadatas"][0]] | |
x.index("1c") if "1c" in x else len(x)+1 | |
# Model | |
#------- | |
#onPrem=False | |
if(onPrem==False): | |
modelPath="mistralai/Mixtral-8x7B-Instruct-v0.1" | |
from huggingface_hub import InferenceClient | |
import gradio as gr | |
client = InferenceClient( | |
modelPath | |
#"mistralai/Mixtral-8x7B-Instruct-v0.1" | |
#"mistralai/Mistral-7B-Instruct-v0.1" | |
) | |
else: | |
import os | |
import requests | |
import subprocess | |
modelPath="/home/af/gguf/models/discolm_german_7b_v1.Q4_0.gguf" | |
if(os.path.exists(modelPath)==False): | |
#url="https://huggingface.co/TheBloke/WizardLM-13B-V1.2-GGUF/resolve/main/wizardlm-13b-v1.2.Q4_0.gguf" | |
#url="https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/resolve/main/mixtral-8x7b-instruct-v0.1.Q4_0.gguf?download=true" | |
#url="https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q4_0.gguf?download=true" | |
url="https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF/resolve/main/discolm_german_7b_v1.Q4_0.gguf?download=true" | |
response = requests.get(url) | |
with open("./model.gguf", mode="wb") as file: | |
file.write(response.content) | |
print("Model downloaded") | |
modelPath="./model.gguf" | |
print(modelPath) | |
n="20" | |
if("mixtral-8x7b-instruct" in modelPath): n="0" # mixtral seems to cause problems here... | |
command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600", "--n_threads", "8", "--n_gpu_layers", n] | |
subprocess.Popen(command) | |
print("Server ready!") | |
# Gradio-GUI | |
#------------ | |
def extend_prompt(message="", history=None, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4): #float("Inf") | |
if zeichenlimit is None: zeichenlimit=1000000000 # :-) | |
template0="[INST] {system} [/INST]</s>" #<s> | |
template1="[INST] {message} [/INST] " | |
template2="{response}</s>" | |
if("mixtral-8x7b-instruct" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1 | |
template0="[INST] {system} [/INST]</s>" #<s> | |
template1="[INST] {message} [/INST] " | |
template2="{response}</s>" | |
if("Mistral-7B-Instruct" in modelPath): #https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2 | |
template0="[INST] {system} [/INST]</s>" #<s> | |
template1="[INST] {message} [/INST] " | |
template2="{response}</s>" | |
if("openchat-3.5" in modelPath): #https://huggingface.co/TheBloke/openchat-3.5-0106-GGUF | |
template0="GPT4 Correct User: {system}<|end_of_turn|>GPT4 Correct Assistant: Okay.<|end_of_turn|>" | |
template1="GPT4 Correct User: {message}<|end_of_turn|>GPT4 Correct Assistant: " | |
template2="{response}<|end_of_turn|>" | |
if("SauerkrautLM-7b-HerO" in modelPath): #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO | |
template0="<|im_start|>system\n{system}<|im_end|>\n" | |
template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n" | |
template2="{response}<|im_end|>\n" | |
if("discolm_german_7b" in modelPath): #https://huggingface.co/DiscoResearch/DiscoLM_German_7b_v1 | |
template0="<|im_start|>system\n{system}<|im_end|>\n" | |
template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n" | |
template2="{response}<|im_end|>\n" | |
if("WizardLM-13B-V1.2" in modelPath): #https://huggingface.co/WizardLM/WizardLM-13B-V1.2 | |
template0="{system} " #<s> | |
template1="USER: {message} ASSISTANT: " | |
template2="{response}</s>" | |
if("phi-2" in modelPath): #https://huggingface.co/TheBloke/phi-2-GGUF | |
template0="Instruct: {system}\nOutput: Okay.\n" | |
template1="Instruct: {message}\nOutput:" | |
template2="{response}\n" | |
prompt = "" | |
if RAGAddon is not None: | |
system += RAGAddon | |
if system is not None: | |
prompt += template0.format(system=system) #"<s>" | |
if history is not None: | |
for user_message, bot_response in history[-historylimit:]: | |
if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit]) #"[INST] {user_prompt} [/INST] " | |
if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit]) #"{bot_response}</s> " | |
if message is not None: prompt += template1.format(message=message[:zeichenlimit]) #"[INST] {message} [/INST]" | |
if system2 is not None: | |
prompt += system2 | |
return prompt | |
import gradio as gr | |
import requests | |
import json | |
from datetime import datetime | |
import os | |
import re | |
def response(message, history): | |
settings="Temporär" | |
# Preprocessing to revent simple forms of prompt injection: | |
#---------------------------------------------------------- | |
message=message.replace("[INST]","") | |
message=message.replace("[/INST]","") | |
message=re.sub("<[|](im_start|im_end|end_of_turn)[|]>", '', message) | |
# Load Memory if settings=="Permanent" | |
#------------------------------------- | |
if (settings=="Permanent"): | |
if((len(history)==0)&(os.path.isfile(filename))): history=json.load(open(filename,'r',encoding="utf-8")) # retrieve history (if available) | |
system="Du bist ein deutschsprachiges wortkarges KI-basiertes Assistenzsystem. Fasse dich kurz und verzichte auf Codebeispiele." | |
#RAG-layer 0: Intention-RAG | |
#--------------------------- | |
typeResults=collection.query( | |
query_texts=[message], | |
n_results=4, | |
where={"type": "0"} | |
) | |
myType=typeResults["metadatas"][0][0]["type2"] # einfachste Variante | |
x=[x["type2"] for x in typeResults["metadatas"][0]] # liste die type2-Einträge auf | |
myType="1a" if ((x.index("1a") if "1a" in x else len(x)+1) < (x.index("!1a") if "!1a" in x else len(x)+1)) else "else" # setze 1a wenn es besser passt als !1a | |
if ((x.index("1b") if "1b" in x else len(x)+1) < (x.index("1a") if "1a" in x else len(x)+1)): # prüfe 1b wenn 1b besser passt als 1a | |
if ((x.index("1b") if "1b" in x else len(x)+1) < (x.index("!1b") if "!1b" in x else len(x)+1)): myType="1b" # setze 1b wenn besser als !1b (sonst lass 1a/else) | |
print("Message:"+message+"\n\nIntention-Type: "+myType+"\n\n"+str(typeResults)) | |
#RAG-layer 1: Respond with CustomDB-RAG (1a, 1b) or Memory-RAG | |
#-------------------------------------------------------------- | |
rag=None | |
historylimit=4 | |
combination=None | |
## RAG 1a: Respond with CustomDB-RAG | |
#----------------------------------- | |
if(myType=="1a"): | |
RAGResults=collection.query( | |
query_texts=[message], | |
n_results=2, | |
where={"type": myType} | |
#where_document={"$contains":"search_string"} | |
) | |
dists=["<br><small>(relevance: "+str(round((1-d)*100)/100)+";" for d in RAGResults['distances'][0]] | |
sources=["source: "+s["source"]+")</small>" for s in RAGResults['metadatas'][0]] | |
texts=RAGResults['documents'][0] | |
combination = zip(texts,dists,sources) | |
combination = [' '.join(triplets) for triplets in combination] | |
#print(combination) | |
rag="\n\n" | |
rag += "Mit Blick auf die aktuelle Äußerung des Users erinnerst du dich insb. an folgende KI-Verfahren aus unserer Datenbank:\n" | |
rag += str(texts) | |
rag += "\n\nIm Folgenden siehst du den jüngsten Dialog-Verlauf:" | |
else: | |
## RAG 1a: Respond with CustomDB-RAG | |
#----------------------------------- | |
if(myType=="1b"): | |
RAGResults=collection.query( | |
query_texts=[message], | |
n_results=2, | |
where={"type": myType} | |
#where_document={"$contains":"search_string"} | |
) | |
dists=["<br><small>(relevance: "+str(round((1-d)*100)/100)+";" for d in RAGResults['distances'][0]] | |
sources=["source: "+s["source"]+")</small>" for s in RAGResults['metadatas'][0]] | |
texts=RAGResults['documents'][0] | |
combination = zip(texts,dists,sources) | |
combination = [' '.join(triplets) for triplets in combination] | |
#print(combination) | |
rag="\n\n" | |
rag += "Beziehe dich in deiner Fortsetzung des Dialogs AUSSCHLIEßLICH auf die folgenden Informationen und gebe keine weiteren Informationen heraus:\n" | |
rag += str(texts) | |
rag += "\n\nIm Folgenden siehst du den jüngsten Dialog-Verlauf:" | |
## Else: Respond with Memory-RAG | |
#-------------------------------- | |
else: | |
x=collection.get(include=[])["ids"] | |
if(len(x)>(historylimit*2)): # turn on RAG when the database contains entries that are not shown within historylimit | |
RAGResults=collection.query( | |
query_texts=[message], | |
n_results=1, | |
where={"type": "episode"} | |
) | |
texts=RAGResults["metadatas"][0][0]["dialog"] #str() | |
#print("Message: "+message+"\n\nBest Match: "+texts) | |
rag="\n\n" | |
rag += "Mit Blick auf die aktuelle Äußerung des Users erinnerst du dich insb. an folgende Episode aus eurem Dialog:\n" | |
rag += str(texts) | |
rag += "\n\nIm Folgenden siehst du den jüngsten Dialog-Verlauf:" | |
# Request Response from LLM: | |
system2=None # system2 can be used as fictive first words of the AI, which are not displayed or stored | |
#print("RAG: "+rag) | |
#print("System: "+system+"\n\nMessage: "+message) | |
prompt=extend_prompt( | |
message, # current message of the user | |
history, # complete history | |
system, # system prompt | |
rag, # RAG-component added to the system prompt | |
system2, # fictive first words of the AI (neither displayed nor stored) | |
historylimit=historylimit # number of past messages to consider for response to current message | |
) | |
print("\n\n*** Prompt:\n"+prompt+"\n***\n\n") | |
## Request response from model | |
#------------------------------ | |
print("AI running on prem!" if(onPrem) else "AI running HFHub!") | |
if(onPrem==False): | |
temperature=float(0.9) | |
max_new_tokens=500 | |
top_p=0.95 | |
repetition_penalty=1.0 | |
if temperature < 1e-2: temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
response = "" | |
#print("User: "+message+"\nAI: ") | |
for text in stream: | |
part=text.token.text | |
#print(part, end="", flush=True) | |
response += part | |
yield response | |
if((myType=="1a")): #add RAG-results to chat-output if appropriate | |
response2=response+"\n\n<br><details><summary><strong>Sources</strong></summary><br><ul>"+ "".join(["<li>" + s + "</li>" for s in combination])+"</ul></details>" | |
yield response2 | |
history.append((message, response)) # add current dialog to history | |
# Store current state in DB if settings=="Permanent" | |
if (settings=="Permanent"): | |
x=collection.get(include=[])["ids"] # add current dialog to db | |
collection.add( | |
documents=[message,response], | |
metadatas=[ | |
{ "source": "ICH", "dialog": f"ICH: {message.strip()}\n DU: {response.strip()}", "type":"episode"}, | |
{ "source": "DU", "dialog": f"ICH: {message.strip()}\n DU: {response.strip()}", "type":"episode"} | |
], | |
ids=[str(len(x)+1),str(len(x)+2)] | |
) | |
json.dump(history,open(filename,'w',encoding="utf-8"),ensure_ascii=False) | |
if(onPrem==True): | |
# url="https://afischer1985-wizardlm-13b-v1-2-q4-0-gguf.hf.space/v1/completions" | |
url="http://0.0.0.0:2600/v1/completions" | |
body={"prompt":prompt,"max_tokens":None, "echo":"False","stream":"True"} # e.g. Mixtral-Instruct | |
if("discolm_german_7b" in modelPath): body.update({"stop": ["<|im_end|>"]}) # fix stop-token of DiscoLM | |
response="" #+"("+myType+")\n" | |
buffer="" | |
#print("URL: "+url) | |
#print("User: "+message+"\nAI: ") | |
for text in requests.post(url, json=body, stream=True): #-H 'accept: application/json' -H 'Content-Type: application/json' | |
if buffer is None: buffer="" | |
buffer=str("".join(buffer)) | |
# print("*** Raw String: "+str(text)+"\n***\n") | |
text=text.decode('utf-8') | |
if((text.startswith(": ping -")==False) & (len(text.strip("\n\r"))>0)): buffer=buffer+str(text) | |
# print("\n*** Buffer: "+str(buffer)+"\n***\n") | |
buffer=buffer.split('"finish_reason": null}]}') | |
if(len(buffer)==1): | |
buffer="".join(buffer) | |
pass | |
if(len(buffer)==2): | |
part=buffer[0]+'"finish_reason": null}]}' | |
if(part.lstrip('\n\r').startswith("data: ")): part=part.lstrip('\n\r').replace("data: ", "") | |
try: | |
part = str(json.loads(part)["choices"][0]["text"]) | |
#print(part, end="", flush=True) | |
response=response+part | |
buffer="" # reset buffer | |
except Exception as e: | |
print("Exception:"+str(e)) | |
pass | |
yield response | |
if((myType=="1a")): #add RAG-results to chat-output if appropriate | |
response2=response+"\n\n<br><details><summary><strong>Sources</strong></summary><br><ul>"+ "".join(["<li>" + s + "</li>" for s in combination])+"</ul></details>" | |
yield response2 | |
history.append((message, response)) # add current dialog to history | |
# Store current state in DB if settings=="Permanent" | |
if (settings=="Permanent"): | |
x=collection.get(include=[])["ids"] # add current dialog to db | |
collection.add( | |
documents=[message,response], | |
metadatas=[ | |
{ "source": "ICH", "dialog": f"ICH: {message.strip()}\n DU: {response.strip()}", "type":"episode"}, | |
{ "source": "DU", "dialog": f"ICH: {message.strip()}\n DU: {response.strip()}", "type":"episode"} | |
], | |
ids=[str(len(x)+1),str(len(x)+2)] | |
) | |
json.dump(history,open(filename,'w',encoding="utf-8"),ensure_ascii=False) | |
gr.ChatInterface( | |
response, | |
chatbot=gr.Chatbot(value=[[None,"Herzlich willkommen! Ich bin ein KI-basiertes Assistenzsystem, das für jede Anfrage die am besten geeigneten KI-Tools empfiehlt.<br>Aktuell bin ich wenig mehr als eine Tech-Demo und kenne nur 7 KI-Modelle - also sei bitte nicht zu streng mit mir.<ul><li>wenn du ein KI-Modell suchst, antworte ich auf Basis der Liste</li><li>wenn du Fragen zur Benutzung eines KI-Modells hast, verweise ich an andere Stellen</li><li>wenn du andre Fragen hast, antworte ich frei und berücksichtige dabei Relevantes aus dem gesamten bisherigen Dialog.</li></ul><br>Was ist dein Anliegen?"]],render_markdown=True), | |
title="German AI-Interface with advanced RAG", | |
#additional_inputs=[gr.Dropdown(["Permanent","Temporär"],value="Temporär",label="Dialog sichern?")] | |
).queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864) | |
print("Interface up and running!") | |