#########################################################################################
# Title: German AI-Interface with advanced RAG
# Author: Andreas Fischer
# Date: January 31st, 2023
# Last update: February 21st, 2024
##########################################################################################
#https://github.com/abetlen/llama-cpp-python/issues/306
#sudo apt install libclblast-dev
#CMAKE_ARGS="-DLLAMA_CLBLAST=on" FORCE_CMAKE=1 pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir -v
# Prepare resources
#-------------------
import torch
import gc
torch.cuda.empty_cache()
gc.collect()
import os
from datetime import datetime
global filename
filename=f"./{datetime.now().strftime('%Y%m%d')}_history.json" # where to store the history as json-file
if(os.path.exists(filename)==True): os.remove(filename)
# Chroma-DB
#-----------
import os
import chromadb
dbPath = "/home/af/Schreibtisch/Code/gradio/Chroma/db"
onPrem = True if(os.path.exists(dbPath)) else False
if(onPrem==False): dbPath="/home/user/app/db"
onPrem=False
print(dbPath)
#client = chromadb.Client()
path=dbPath
client = chromadb.PersistentClient(path=path)
print(client.heartbeat())
print(client.get_version())
print(client.list_collections())
from chromadb.utils import embedding_functions
default_ef = embedding_functions.DefaultEmbeddingFunction()
#sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")
embeddingModel = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer", device="cuda" if(onPrem) else "cpu")
print(str(client.list_collections()))
global collection
dbName="myDB"
if("name="+dbName in str(client.list_collections())): client.delete_collection(name=dbName)
if("name="+dbName in str(client.list_collections())):
print(dbName+" found!")
collection = client.get_collection(name=dbName, embedding_function=embeddingModel )
else:
print(dbName+" created!")
collection = client.create_collection(
dbName,
embedding_function=embeddingModel,
metadata={"hnsw:space": "cosine"})
# txts0: Intentions
#------------------
txts0=[
"Ich suche ein KI-Programm mit bestimmten Fähigkeiten.", # 1a
#"Ich suche kein KI-Programm mit bestimmten Fähigkeiten.", # !1a
"Ich habe ein KI-Programm und habe Fragen zur Benutzung.", # !1a (besser, um 1a und 1b abzugrenzen)
"Ich habe ein KI-Programm und habe Fragen zur Benutzung.", # 1b
#"Ich habe kein KI-Programm und habe keine Fragen zur Benutzung.", # !1b
"Ich habe eine allgemeine Frage ohne KI-Bezug." # !1b (greift besser bei Alltagsfragen)
]
# txts1a: RAG-Infos for first intention:
#---------------------------------------
txts1a=[
"Text generating AI model mistralai/Mixtral-8x7B-Instruct-v0.1: Suitable for text generation, e.g., social media content, marketing copy, blog posts, short stories, etc.",
"Image generating AI model stabilityai/sdxl-turbo: Suitable for image generation, e.g., illustrations, graphics, AI art, etc.",
"Audio transcribing AI model openai/whisper-large-v3: Suitable for audio-transcription in different languages",
"Speech synthesizing AI model coqui/XTTS-v2: Suitable for generating audio from text and for voice-cloning",
"Code generating AI model deepseek-ai/deepseek-coder-6.7b-instruct: Suitable for programming in Python, JavaScript, PHP, Bash and many other programming languages.",
"Translation AI model Helsinki-NLP/opus-mt: Suitable for translating text, e.g., from English to German or vice versa",
"Search result-integrating AI model phind/phind-v9-model: Suitable for researching current topics and for obtaining precise and up-to-date answers to questions based on web search results"
]
# txts1b: RAG-Infos for second intention
#----------------------------------------
txts1b=[
"Für Fragen zur Umsetzung von KI-Verfahren ist das KI-basierte Assistenzsystem nicht geeignet. Möglicherweise empfiehlt sich ein KI-Modell mit Internetzugriff, wie beispielsweise phind.com, oder das Kontaktieren eines Experten wie Dr. Andreas Fischer (andreasfischer1985@web.de)."
]
#meta=[{"type":"0", "type2":"0","source":"AF"}]*len(txts0)+[{"type":"1a","type2":"0","source":"AF"}]*len(txts1a)+[{"type":"1b","type2":"0","source":"AF"}]*len(txts1b)
meta = []
for _ in range(len(txts0)):
meta.append({"type":"0", "type2":"0","source":"AF"})
for _ in range(len(txts1a)):
meta.append({"type":"1a","type2":"0","source":"AF"})
for _ in range(len(txts1b)):
meta.append({"type":"1b","type2":"0","source":"AF"})
#Change type2 for txt0-entries
#-----------------------------
meta[0]["type2"]="1a" # RAG mit txts1a
meta[1]["type2"]="!1a" # else
meta[2]["type2"]="1b" # RAG mit txts1b
meta[3]["type2"]="!1b" # else
txts=txts0+txts1a+txts1b
collection.add(
documents=txts,
ids=[str(i) for i in list(range(len(txts)))],
metadatas=meta
)
# Add entry to episodic memory
x=collection.get(include=[])["ids"]
if(True): #len(x)==0):
message="Ich bin der User."
response="Hallo User, wie kann ich dienen?"
x=collection.get(include=[])["ids"]
collection.add(
documents=[message,response],
metadatas=[
{"source": "ICH", "dialog": f"ICH: {message}\nDU: {response}", "type":"episode"},
{"source": "DU", "dialog": f"ICH: {message}\nDU: {response}", "type":"episode"}
],
ids=[str(len(x)+1),str(len(x)+2)]
)
RAGResults=collection.query(
query_texts=[message],
n_results=1,
#where={"source": "USER"}
)
RAGResults["metadatas"][0][0]["dialog"]
x=collection.get(include=[])["ids"]
x
collection.get() # Inspect db-entries
print("Database ready!")
print(collection.count())
rag0=collection.query(
query_texts=[message],
n_results=4,
where={"type": "0"}
)
x=rag0["metadatas"][0][0]["type2"]
x=[x["type2"] for x in rag0["metadatas"][0]]
x.index("1c") if "1c" in x else len(x)+1
# Model
#-------
#onPrem=False
if(onPrem==False):
modelPath="mistralai/Mixtral-8x7B-Instruct-v0.1"
from huggingface_hub import InferenceClient
import gradio as gr
client = InferenceClient(
modelPath
#"mistralai/Mixtral-8x7B-Instruct-v0.1"
#"mistralai/Mistral-7B-Instruct-v0.1"
)
else:
import os
import requests
import subprocess
modelPath="/home/af/gguf/models/discolm_german_7b_v1.Q4_0.gguf"
if(os.path.exists(modelPath)==False):
#url="https://huggingface.co/TheBloke/WizardLM-13B-V1.2-GGUF/resolve/main/wizardlm-13b-v1.2.Q4_0.gguf"
#url="https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/resolve/main/mixtral-8x7b-instruct-v0.1.Q4_0.gguf?download=true"
#url="https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q4_0.gguf?download=true"
url="https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF/resolve/main/discolm_german_7b_v1.Q4_0.gguf?download=true"
response = requests.get(url)
with open("./model.gguf", mode="wb") as file:
file.write(response.content)
print("Model downloaded")
modelPath="./model.gguf"
print(modelPath)
n="20"
if("mixtral-8x7b-instruct" in modelPath): n="0" # mixtral seems to cause problems here...
command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600", "--n_threads", "8", "--n_gpu_layers", n]
subprocess.Popen(command)
print("Server ready!")
# Gradio-GUI
#------------
def extend_prompt(message="", history=None, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4): #float("Inf")
if zeichenlimit is None: zeichenlimit=1000000000 # :-)
template0="[INST] {system} [/INST]" #
template1="[INST] {message} [/INST] "
template2="{response}"
if("mixtral-8x7b-instruct" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
template0="[INST] {system} [/INST]" #
template1="[INST] {message} [/INST] "
template2="{response}"
if("Mistral-7B-Instruct" in modelPath): #https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
template0="[INST] {system} [/INST]" #
template1="[INST] {message} [/INST] "
template2="{response}"
if("openchat-3.5" in modelPath): #https://huggingface.co/TheBloke/openchat-3.5-0106-GGUF
template0="GPT4 Correct User: {system}<|end_of_turn|>GPT4 Correct Assistant: Okay.<|end_of_turn|>"
template1="GPT4 Correct User: {message}<|end_of_turn|>GPT4 Correct Assistant: "
template2="{response}<|end_of_turn|>"
if("SauerkrautLM-7b-HerO" in modelPath): #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO
template0="<|im_start|>system\n{system}<|im_end|>\n"
template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
template2="{response}<|im_end|>\n"
if("discolm_german_7b" in modelPath): #https://huggingface.co/DiscoResearch/DiscoLM_German_7b_v1
template0="<|im_start|>system\n{system}<|im_end|>\n"
template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
template2="{response}<|im_end|>\n"
if("WizardLM-13B-V1.2" in modelPath): #https://huggingface.co/WizardLM/WizardLM-13B-V1.2
template0="{system} " #
template1="USER: {message} ASSISTANT: "
template2="{response}"
if("phi-2" in modelPath): #https://huggingface.co/TheBloke/phi-2-GGUF
template0="Instruct: {system}\nOutput: Okay.\n"
template1="Instruct: {message}\nOutput:"
template2="{response}\n"
prompt = ""
if RAGAddon is not None:
system += RAGAddon
if system is not None:
prompt += template0.format(system=system) #""
if history is not None:
for user_message, bot_response in history[-historylimit:]:
if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit]) #"[INST] {user_prompt} [/INST] "
if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit]) #"{bot_response} "
if message is not None: prompt += template1.format(message=message[:zeichenlimit]) #"[INST] {message} [/INST]"
if system2 is not None:
prompt += system2
return prompt
import gradio as gr
import requests
import json
from datetime import datetime
import os
import re
def response(message, history):
settings="Temporär"
# Preprocessing to revent simple forms of prompt injection:
#----------------------------------------------------------
message=message.replace("[INST]","")
message=message.replace("[/INST]","")
message=re.sub("<[|](im_start|im_end|end_of_turn)[|]>", '', message)
# Load Memory if settings=="Permanent"
#-------------------------------------
if (settings=="Permanent"):
if((len(history)==0)&(os.path.isfile(filename))): history=json.load(open(filename,'r',encoding="utf-8")) # retrieve history (if available)
system="Du bist ein deutschsprachiges wortkarges KI-basiertes Assistenzsystem. Fasse dich kurz und verzichte auf Codebeispiele."
#RAG-layer 0: Intention-RAG
#---------------------------
typeResults=collection.query(
query_texts=[message],
n_results=4,
where={"type": "0"}
)
myType=typeResults["metadatas"][0][0]["type2"] # einfachste Variante
x=[x["type2"] for x in typeResults["metadatas"][0]] # liste die type2-Einträge auf
myType="1a" if ((x.index("1a") if "1a" in x else len(x)+1) < (x.index("!1a") if "!1a" in x else len(x)+1)) else "else" # setze 1a wenn es besser passt als !1a
if ((x.index("1b") if "1b" in x else len(x)+1) < (x.index("1a") if "1a" in x else len(x)+1)): # prüfe 1b wenn 1b besser passt als 1a
if ((x.index("1b") if "1b" in x else len(x)+1) < (x.index("!1b") if "!1b" in x else len(x)+1)): myType="1b" # setze 1b wenn besser als !1b (sonst lass 1a/else)
print("Message:"+message+"\n\nIntention-Type: "+myType+"\n\n"+str(typeResults))
#RAG-layer 1: Respond with CustomDB-RAG (1a, 1b) or Memory-RAG
#--------------------------------------------------------------
rag=None
historylimit=4
combination=None
## RAG 1a: Respond with CustomDB-RAG
#-----------------------------------
if(myType=="1a"):
RAGResults=collection.query(
query_texts=[message],
n_results=2,
where={"type": myType}
#where_document={"$contains":"search_string"}
)
dists=["
(relevance: "+str(round((1-d)*100)/100)+";" for d in RAGResults['distances'][0]]
sources=["source: "+s["source"]+")" for s in RAGResults['metadatas'][0]]
texts=RAGResults['documents'][0]
combination = zip(texts,dists,sources)
combination = [' '.join(triplets) for triplets in combination]
#print(combination)
rag="\n\n"
rag += "Mit Blick auf die aktuelle Äußerung des Users erinnerst du dich insb. an folgende KI-Verfahren aus unserer Datenbank:\n"
rag += str(texts)
rag += "\n\nIm Folgenden siehst du den jüngsten Dialog-Verlauf:"
else:
## RAG 1a: Respond with CustomDB-RAG
#-----------------------------------
if(myType=="1b"):
RAGResults=collection.query(
query_texts=[message],
n_results=2,
where={"type": myType}
#where_document={"$contains":"search_string"}
)
dists=["
(relevance: "+str(round((1-d)*100)/100)+";" for d in RAGResults['distances'][0]]
sources=["source: "+s["source"]+")" for s in RAGResults['metadatas'][0]]
texts=RAGResults['documents'][0]
combination = zip(texts,dists,sources)
combination = [' '.join(triplets) for triplets in combination]
#print(combination)
rag="\n\n"
rag += "Beziehe dich in deiner Fortsetzung des Dialogs AUSSCHLIEßLICH auf die folgenden Informationen und gebe keine weiteren Informationen heraus:\n"
rag += str(texts)
rag += "\n\nIm Folgenden siehst du den jüngsten Dialog-Verlauf:"
## Else: Respond with Memory-RAG
#--------------------------------
else:
x=collection.get(include=[])["ids"]
if(len(x)>(historylimit*2)): # turn on RAG when the database contains entries that are not shown within historylimit
RAGResults=collection.query(
query_texts=[message],
n_results=1,
where={"type": "episode"}
)
texts=RAGResults["metadatas"][0][0]["dialog"] #str()
#print("Message: "+message+"\n\nBest Match: "+texts)
rag="\n\n"
rag += "Mit Blick auf die aktuelle Äußerung des Users erinnerst du dich insb. an folgende Episode aus eurem Dialog:\n"
rag += str(texts)
rag += "\n\nIm Folgenden siehst du den jüngsten Dialog-Verlauf:"
# Request Response from LLM:
system2=None # system2 can be used as fictive first words of the AI, which are not displayed or stored
#print("RAG: "+rag)
#print("System: "+system+"\n\nMessage: "+message)
prompt=extend_prompt(
message, # current message of the user
history, # complete history
system, # system prompt
rag, # RAG-component added to the system prompt
system2, # fictive first words of the AI (neither displayed nor stored)
historylimit=historylimit # number of past messages to consider for response to current message
)
print("\n\n*** Prompt:\n"+prompt+"\n***\n\n")
## Request response from model
#------------------------------
print("AI running on prem!" if(onPrem) else "AI running HFHub!")
if(onPrem==False):
temperature=float(0.9)
max_new_tokens=500
top_p=0.95
repetition_penalty=1.0
if temperature < 1e-2: temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
response = ""
#print("User: "+message+"\nAI: ")
for text in stream:
part=text.token.text
#print(part, end="", flush=True)
response += part
yield response
if((myType=="1a")): #add RAG-results to chat-output if appropriate
response2=response+"\n\nSources
"+ "".join(["
Sources
"+ "".join(["
Aktuell bin ich wenig mehr als eine Tech-Demo und kenne nur 7 KI-Modelle - also sei bitte nicht zu streng mit mir.