AFischer1985 commited on
Commit
b634085
1 Parent(s): 5c691a5

Update chunking

Browse files
Files changed (1) hide show
  1. run.py +73 -22
run.py CHANGED
@@ -2,7 +2,7 @@
2
  # Title: Gradio Interface to LLM-chatbot with dynamic RAG-funcionality and ChromaDB
3
  # Author: Andreas Fischer
4
  # Date: October 10th, 2024
5
- # Last update: October 15th, 2024
6
  ##########################################################################################
7
 
8
  import os
@@ -82,8 +82,8 @@ def format_prompt0(message, history):
82
 
83
  def format_prompt(message, history, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4, removeHTML=False):
84
  if zeichenlimit is None: zeichenlimit=1000000000 # :-)
85
- startOfString="<s>" #<s> [INST] U1 [/INST] A1</s> [INST] U2 [/INST] A2</s>
86
- template0=" [INST] {system} [/INST]</s>"
87
  template1=" [INST] {message} [/INST]"
88
  template2=" {response}</s>"
89
  prompt = ""
@@ -155,13 +155,58 @@ def convertPDF(pdf_file, allow_ocr=False):
155
  # Function for splitting text with overlap
156
  #------------------------------------------
157
 
158
- def split_with_overlap(text,chunk_size=3500, overlap=700):
159
- chunks=[]
160
- step=max(1,chunk_size-overlap)
161
- for i in range(0,len(text),step):
162
- end=min(i+chunk_size,len(text))
163
- chunks.append(text[i:end])
164
- return chunks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165
 
166
 
167
  #---------------------------------------------------------------
@@ -169,16 +214,22 @@ def split_with_overlap(text,chunk_size=3500, overlap=700):
169
  #---------------------------------------------------------------
170
 
171
  def add_doc(path, session):
 
172
  print("def add_doc!")
173
  print(path)
174
  anhang=False
175
  if(str.lower(path).endswith(".pdf") and os.path.exists(path)):
176
  doc=convertPDF(path)
177
- if(len(doc[0])>5):
178
- gr.Info("PDF uploaded to DB_"+str(session)+", start Indexing excerpt (first 5 pages)!")
 
 
 
 
 
179
  else:
180
- gr.Info("PDF uploaded to DB_"+str(session)+", start Indexing!")
181
- doc="\n\n".join(doc[0][0:5])
182
  anhang=True
183
  else:
184
  gr.Info("No PDF attached - answer based on DB_"+str(session)+".")
@@ -196,29 +247,28 @@ def add_doc(path, session):
196
  collection = client.get_collection(
197
  name=dbName, embedding_function=embeddingModel)
198
  if(anhang==True):
199
- corpus=split_with_overlap(doc,3500,700)
200
- print(len(corpus))
 
201
  then = datetime.now()
202
  x=collection.get(include=[])["ids"]
203
  print(len(x))
204
  if(len(x)==0):
205
  chunkSize=40000
206
- for i in range(round(len(corpus)/chunkSize+0.5)):
207
  print("embed batch "+str(i)+" of "+str(round(len(corpus)/chunkSize+0.5)))
208
  ids=list(range(i*chunkSize,(i*chunkSize+chunkSize)))
209
  batch=corpus[i*chunkSize:(i*chunkSize+chunkSize)]
210
  textIDs=[str(id) for id in ids[0:len(batch)]]
211
  ids=[str(id+len(x)+1) for id in ids[0:len(batch)]] # id refers to chromadb-unique ID
212
  collection.add(documents=batch, ids=ids,
213
- metadatas=[{"date": str("2024-10-10")} for b in batch])
214
  print("finished batch "+str(i)+" of "+str(round(len(corpus)/40000+0.5)))
215
  now = datetime.now()
216
  gr.Info(f"Indexing complete!")
217
- print(now-then)
218
  return(collection)
219
 
220
- #split_with_overlap("test me if you can",2,1)
221
-
222
 
223
  #--------------------------------------------------------
224
  # Function for response to user queries and pot. addenda
@@ -249,7 +299,7 @@ def multimodal_response(message, history, dropdown, hfToken, request: gr.Request
249
  print(str(client.list_collections()))
250
  x=collection.get(include=[])["ids"]
251
  context=collection.query(query_texts=[query], n_results=1)
252
- context=["<context "+str(i)+"> "+str(c)+"</context "+str(i)+">" for i,c in enumerate(context["documents"][0])]
253
  gr.Info("Kontext:\n"+str(context))
254
  generate_kwargs = dict(
255
  temperature=float(0.9),
@@ -305,3 +355,4 @@ i=gr.ChatInterface(multimodal_response,
305
  ])
306
  i.launch() #allowed_paths=["."])
307
 
 
 
2
  # Title: Gradio Interface to LLM-chatbot with dynamic RAG-funcionality and ChromaDB
3
  # Author: Andreas Fischer
4
  # Date: October 10th, 2024
5
+ # Last update: October 22th, 2024
6
  ##########################################################################################
7
 
8
  import os
 
82
 
83
  def format_prompt(message, history, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4, removeHTML=False):
84
  if zeichenlimit is None: zeichenlimit=1000000000 # :-)
85
+ startOfString="<s>"
86
+ template0=" [INST] {system} [/INST] </s>" #" [INST] {system} [/INST] </s>" vs " [INST]{system}\n [/INST] </s>"
87
  template1=" [INST] {message} [/INST]"
88
  template2=" {response}</s>"
89
  prompt = ""
 
155
  # Function for splitting text with overlap
156
  #------------------------------------------
157
 
158
+ def split_with_overlap0(text,chunk_size=3500, overlap=700):
159
+ """ Split text in chunks based on number of characters (chunk_size) with chunks overlapping (overlap)"""
160
+ chunks=[]
161
+ step=max(1,chunk_size-overlap)
162
+ for i in range(0,len(text),step):
163
+ end=min(i+chunk_size,len(text))
164
+ chunks.append(text[i:end])
165
+ return chunks
166
+
167
+ import re
168
+ def split_with_overlap(text, chunk_size=3500, overlap=700, pattern=r'([.!;?][ \n\r]|[\n\r]{2,})', variant=1, verbose=False):
169
+ """ Split text in chunks based on regex (pattern) matches. By default the pattern is '([.!;?][ \\n\\r]|[\\n\\r]{2,})' Chunks are no longer than a certain number of characters (chunk_size) with chunks overlapping (overlap).
170
+ By default (variant=1) chunking is based on complete sentences, but it's also possible to split only within the left overlap region and within the rest of the chunk-size (variant==2) or strictly within both overlap-regions (variant=3).
171
+ """
172
+ chunks = []
173
+ overlap=min(overlap,chunk_size) # Overlap kann nicht größer sein als chunk_size
174
+ step = max(1, chunk_size - overlap) # step richtet sich nach chunk_size und overlap
175
+ def find_pattern(text): # Funktion zur Suche nach dem Muster
176
+ return re.search(pattern, text)
177
+ i, lastEnd = 0,0
178
+ while i<len(text):
179
+ print("i="+str(i))
180
+ end = min(i + chunk_size, len(text))
181
+ pattern_match = find_pattern(text[i:end]) # erstes Vorkommnis (if any)
182
+ matchesStart = [x.start() for x in re.finditer(pattern, text[i:end])] # start aller matches
183
+ matchesEnd = [x.start() for x in re.finditer(pattern, text[i:end])] # end aller matches
184
+ step = max(1, chunk_size - overlap) # Normalerweise beträgt ein Step chunk_size - overlap
185
+ if pattern_match: # Wenn (mindestens) ein Satzzeichen gefunden wurde
186
+ for s in matchesStart: # gehe jedes Satzzeichen durch
187
+ if ((variant<=2 and s>=overlap) or (variant==3 and s>=overlap and s>(chunk_size-overlap))): # wenn das Satzzeichen nicht im Overlap links liegt (1) oder zusätzlich im reechten Overlap liegt (2) - wobei letzteres unvollständige Sätze bedeuten kann
188
+ end=s+i+1 # Setze end auf den Start des Patterns/Satzzeichens im gesamten Text
189
+ if(verbose==True): print("***move end:"+str(end)+"; step="+str(step))
190
+ if(s<(chunk_size-overlap)):step=min(step,max(1,s-overlap)) # Springe mit step höchstens zum Ende des Satzzeichens (nur erforderlich, wenn end nicht im Overlap)
191
+ if ((variant==1 and i>0) or (variant>=2 and pattern_match.start()<overlap and i>0)): # wenn das erste Satzzeichen im Overlap liegt
192
+ i=i+pattern_match.start()+1 # Verzichte auf Textteile vor dem ersten Satzzeichen
193
+ if(verbose==True): print("i="+str(i)+"; end="+str(end)+"; step="+str(step)+"; len="+str(len(text))+"; match="+str(pattern_match)+"; text="+text[i:end]+"; rest="+text[end:])
194
+ if(end>lastEnd): # wenn das Ende sich verschoben hat (und nicht nur den Satzbeginn zu einem bereits bekannten Satz abschneidet)
195
+ chunks.append(text[i:end])
196
+ lastEnd=end
197
+ if(verbose==True): print("Text at position "+str(i)+": "+text[i:end])
198
+ i += step
199
+ if(len(text[end:])>0): chunks.append(text[end:]) # Ergänze am ende etwaigen Rest
200
+ return chunks
201
+
202
+ fiveChars= "(?<![ \n\(]bspw|[ \n]inkl)"
203
+ fourChars= "(?<![ \n\(]sog|[ \n]Mio|[ \n]Mrd|[ \n]Tsd|[ \n]Tel)"
204
+ threeChars= "(?<!www|bzw|etc|ggf|[ \n\(]al|[ \n\(]St|[ \n\(]dh|[ \n\(]va|[ \n\(]ca|[ \n\(]Dr|[ \n\(]Hr|[ \n\(]Fr|[0-9]ff)"
205
+ twoChars= "(?<![ \n\(][A-Za-zΆ-Ωά-ωäöüß])"
206
+ oneChars= "(?<![0-9.])"
207
+ sentenceRegex="(?<=[^.]{4})"+fiveChars+fourChars+threeChars+twoChars+oneChars+"[.?!](?![A-Za-zΆ-Ωά-ωäöüß0-9.!?'\"])"
208
+ sectionRegex="\n[ ]*\n[\n ]*"
209
+ splitRegex="("+sentenceRegex+"|"+sectionRegex+")"
210
 
211
 
212
  #---------------------------------------------------------------
 
214
  #---------------------------------------------------------------
215
 
216
  def add_doc(path, session):
217
+ global device
218
  print("def add_doc!")
219
  print(path)
220
  anhang=False
221
  if(str.lower(path).endswith(".pdf") and os.path.exists(path)):
222
  doc=convertPDF(path)
223
+ if(len(doc[0])>5):
224
+ if(not "cuda" in device):
225
+ doc="\n\n".join(doc[0][0:5])
226
+ gr.Info("PDF uploaded to DB_"+str(session)+", start Indexing excerpt (first 5 pages on CPU setups)!")
227
+ else:
228
+ doc="\n\n".join(doc[0])
229
+ gr.Info("PDF uploaded to DB_"+str(session)+", start Indexing!")
230
  else:
231
+ doc="\n\n".join(doc[0])
232
+ gr.Info("PDF uploaded to DB_"+str(session)+", start Indexing!")
233
  anhang=True
234
  else:
235
  gr.Info("No PDF attached - answer based on DB_"+str(session)+".")
 
247
  collection = client.get_collection(
248
  name=dbName, embedding_function=embeddingModel)
249
  if(anhang==True):
250
+ corpus=split_with_overlap(doc,3500,700,pattern=splitRegex)
251
+ print("Length of corpus: "+str(len(corpus)))
252
+ print("Corpus:"+str(corpus))
253
  then = datetime.now()
254
  x=collection.get(include=[])["ids"]
255
  print(len(x))
256
  if(len(x)==0):
257
  chunkSize=40000
258
+ for i in range(round(len(corpus)/chunkSize+0.5)): #0 is first batch, 3 is last (incomplete) batch given 133497 texts
259
  print("embed batch "+str(i)+" of "+str(round(len(corpus)/chunkSize+0.5)))
260
  ids=list(range(i*chunkSize,(i*chunkSize+chunkSize)))
261
  batch=corpus[i*chunkSize:(i*chunkSize+chunkSize)]
262
  textIDs=[str(id) for id in ids[0:len(batch)]]
263
  ids=[str(id+len(x)+1) for id in ids[0:len(batch)]] # id refers to chromadb-unique ID
264
  collection.add(documents=batch, ids=ids,
265
+ metadatas=[{"date": str("2024-10-10")} for b in batch]) #"textID":textIDs, "id":ids,
266
  print("finished batch "+str(i)+" of "+str(round(len(corpus)/40000+0.5)))
267
  now = datetime.now()
268
  gr.Info(f"Indexing complete!")
269
+ print(now-then) #zu viel GB für sentences (GPU), bzw. 0:00:10.375087 für chunks
270
  return(collection)
271
 
 
 
272
 
273
  #--------------------------------------------------------
274
  # Function for response to user queries and pot. addenda
 
299
  print(str(client.list_collections()))
300
  x=collection.get(include=[])["ids"]
301
  context=collection.query(query_texts=[query], n_results=1)
302
+ context=["<Kontext "+str(i)+"> "+str(c)+"</Kontext "+str(i)+">" for i,c in enumerate(context["documents"][0])]
303
  gr.Info("Kontext:\n"+str(context))
304
  generate_kwargs = dict(
305
  temperature=float(0.9),
 
355
  ])
356
  i.launch() #allowed_paths=["."])
357
 
358
+