Spaces:
Running
Running
File size: 4,149 Bytes
8489876 751c1e6 818675e 8489876 818675e 8489876 39043d6 8489876 39043d6 8489876 251281a 8489876 251281a 8489876 5f1e30d 8489876 251281a 3be34c2 8489876 251281a b0fc8f9 251281a b0fc8f9 251281a b0fc8f9 251281a 8489876 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
#########################################################################################
# Title: Gradio Interface to LLM-chatbot with on premises
# Author: Andreas Fischer
# Date: October 15th, 2023
# Last update: January 21st, 2024
##########################################################################################
#https://github.com/abetlen/llama-cpp-python/issues/306
#sudo apt install libclblast-dev
#CMAKE_ARGS="-DLLAMA_CLBLAST=on" FORCE_CMAKE=1 pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir -v
# Get model
#-----------
import os
import requests
##modelPath="/home/af/gguf/models/phi-2.Q4_0.gguf"
#modelPath="/home/af/gguf/models/openchat-3.5-0106.Q4_0.gguf"
modelPath="/home/af/gguf/models/SauerkrautLM-7b-HerO-q8_0.gguf"
#modelPath="/home/af/gguf/models/sauerkrautlm-una-solar-instruct.Q4_0.gguf"
#modelPath="/home/af/gguf/models/decilm-7b-uniform-gqa-q8_0.gguf"
#modelPath="/home/af/gguf/models/mixtral-8x7b-instruct-v0.1.Q4_0.gguf"
if(os.path.exists(modelPath)==False):
#url="https://huggingface.co/TheBloke/WizardLM-13B-V1.2-GGUF/resolve/main/wizardlm-13b-v1.2.Q4_0.gguf"
#url="https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/resolve/main/mixtral-8x7b-instruct-v0.1.Q4_0.gguf?download=true"
url="https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q4_0.gguf?download=true"
response = requests.get(url)
with open("./model.gguf", mode="wb") as file:
file.write(response.content)
print("Model downloaded")
modelPath="./model.gguf"
print(modelPath)
# Llama-cpp-Server
#------------------
import subprocess
command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600", "--n_threads", "4", "--n_gpu_layers","20"]
subprocess.Popen(command)
print("Server ready!")
# Gradio-GUI
#------------
import gradio as gr
import requests
import json
def response(message, history):
prompt=message
system="Du bist ein KI-basiertes Assistenzsystem."
if("mixtral-8x7b-instruct" in modelPath):
prompt=f"[INST] {prompt} [/INST]"
if("Mistral-7B-Instruct" in modelPath):
prompt=f"[INST] {prompt} [/INST]"
if("openchat-3.5" in modelPath):
prompt=f"GPT4 Correct User: {system} {prompt}<|end_of_turn|>GPT4 Correct Assistant:"
if("SauerkrautLM-7b-HerO" in modelPath):
prompt=f"<|im_start|>system\n{system}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
if("WizardLM-13B-V1.2" in modelPath):
prompt=f"{system} USER: {prompt} ASSISTANT: "
if("phi-2" in modelPath):
prompt=f"Instruct: {prompt}\nOutput:"
print(prompt)
#url="https://afischer1985-wizardlm-13b-v1-2-q4-0-gguf.hf.space/v1/completions"
url="http://0.0.0.0:2600/v1/completions"
body={"prompt":prompt,"max_tokens":1000, "echo":"False","stream":"True"} #e.g. Mixtral-Instruct
response=""
buffer=""
print("URL: "+url)
print("User: "+message+"\nAI: ")
for text in requests.post(url, json=body, stream=True): #-H 'accept: application/json' -H 'Content-Type: application/json'
if buffer is None: buffer=""
buffer=str("".join(buffer))
#print("*** Raw String: "+str(text)+"\n***\n")
text=text.decode('utf-8')
if((text.startswith(": ping -")==False) & (len(text.strip("\n\r"))>0)): buffer=buffer+str(text)
#print("\n*** Buffer: "+str(buffer)+"\n***\n")
buffer=buffer.split('"finish_reason": null}]}')
if(len(buffer)==1):
buffer="".join(buffer)
pass
if(len(buffer)==2):
part=buffer[0]+'"finish_reason": null}]}'
if(part.lstrip('\n\r').startswith("data: ")): part=part.lstrip('\n\r').replace("data: ", "")
try:
part = str(json.loads(part)["choices"][0]["text"])
print(part, end="", flush=True)
response=response+part
buffer="" # reset buffer
except Exception as e:
print("Exception:"+str(e))
pass
yield response
gr.ChatInterface(response, chatbot=gr.Chatbot(render_markdown=True),title="AI-Interface").queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864)
print("Interface up and running!")
|