import subprocess import requests from llama_cpp import Llama import gradio as gr url="https://huggingface.co/TheBloke/WizardLM-13B-V1.2-GGUF/resolve/main/wizardlm-13b-v1.2.Q4_0.gguf" response = requests.get(url) with open("./model.gguf", mode="wb") as file: file.write(response.content) print("Model downloaded") command = ["python3", "-m", "llama_cpp.server", "--model", "./model.gguf", "--host", "0.0.0.0", "--port", "2600"] subprocess.Popen(command) print("Model ready!") #llm = Llama(model_path="./model.gguf") #def response(input_text, history): # output = llm(f"Q: {input_text} A:", max_tokens=256, stop=["Q:", "\n"], echo=True) # return output['choices'][0]['text'] def response(message, history): #url="https://afischer1985-wizardlm-13b-v1-2-q4-0-gguf.hf.space/v1/completions" url="http://0.0.0.0:2600/v1/completions" #body={"prompt":"Im Folgenden findest du eine Instruktion, die eine Aufgabe bescheibt. Schreibe eine Antwort, um die Aufgabe zu lösen.\n\n### Instruktion:\n"+message+"\n\n### Antwort:","max_tokens":500, "echo":"False","stream":"True"} body={"prompt":" chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n\nUSER:\n"+message+"\n\nASSISTANT:","max_tokens":500, "echo":"False","stream":"True"} response="" buffer="" print("URL: "+url) print("User: "+message+"\nAI: ") for text in requests.post(url, json=body, stream=True): #-H 'accept: application/json' -H 'Content-Type: application/json' if buffer is None: buffer="" buffer=str("".join(buffer)) #print("*** Raw String: "+str(text)+"\n***\n") text=text.decode('utf-8') if((text.startswith(": ping -")==False) & (len(text.strip("\n\r"))>0)): buffer=buffer+str(text) #print("\n*** Buffer: "+str(buffer)+"\n***\n") buffer=buffer.split('"finish_reason": null}]}') if(len(buffer)==1): buffer="".join(buffer) pass if(len(buffer)==2): part=buffer[0]+'"finish_reason": null}]}' if(part.lstrip('\n\r').startswith("data: ")): part=part.lstrip('\n\r').replace("data: ", "") try: part = str(json.loads(part)["choices"][0]["text"]) print(part, end="", flush=True) response=response+part buffer="" # reset buffer except Exception as e: print("Exception:"+str(e)) pass yield response gr.ChatInterface(response).queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864) print("Interface up and running!")