Spaces:
Sleeping
Sleeping
######################################################################################### | |
# Title: Gradio Interface to LLM-chatbot with RAG-funcionality and ChromaDB on premises | |
# Author: Andreas Fischer | |
# Date: October 15th, 2023 | |
# Last update: December 21th, 2023 | |
########################################################################################## | |
# Get model | |
#----------- | |
import os | |
import requests | |
dbPath="/home/af/Schreibtisch/gradio/Chroma/db" | |
if(os.path.exists(dbPath)==False): | |
dbPath="/home/user/app/db" | |
print(dbPath) | |
#modelPath="/home/af/gguf/models/SauerkrautLM-7b-HerO-q8_0.gguf" | |
modelPath="/home/af/gguf/models/mixtral-8x7b-instruct-v0.1.Q4_0.gguf" | |
if(os.path.exists(modelPath)==False): | |
#url="https://huggingface.co/TheBloke/WizardLM-13B-V1.2-GGUF/resolve/main/wizardlm-13b-v1.2.Q4_0.gguf" | |
#url="https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/resolve/main/mixtral-8x7b-instruct-v0.1.Q4_0.gguf?download=true" | |
url="https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q4_0.gguf?download=true" | |
response = requests.get(url) | |
with open("./model.gguf", mode="wb") as file: | |
file.write(response.content) | |
print("Model downloaded") | |
modelPath="./model.gguf" | |
print(modelPath) | |
# Llama-cpp-Server | |
#------------------ | |
import subprocess | |
command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600"] | |
subprocess.Popen(command) | |
print("Server ready!") | |
# Chroma-DB | |
#----------- | |
import chromadb | |
#client = chromadb.Client() | |
path=dbPath | |
client = chromadb.PersistentClient(path=path) | |
print(client.heartbeat()) | |
print(client.get_version()) | |
print(client.list_collections()) | |
from chromadb.utils import embedding_functions | |
default_ef = embedding_functions.DefaultEmbeddingFunction() | |
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer") | |
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda") | |
print(str(client.list_collections())) | |
global collection | |
if("name=ChromaDB1" in str(client.list_collections())): | |
print("ChromaDB1 found!") | |
collection = client.get_collection(name="ChromaDB1", embedding_function=sentence_transformer_ef) | |
else: | |
print("ChromaDB1 created!") | |
collection = client.create_collection( | |
"ChromaDB1", | |
embedding_function=sentence_transformer_ef, | |
metadata={"hnsw:space": "cosine"}) | |
collection.add( | |
documents=["The meaning of life is to love.", "This is a sentence", "This is a sentence too"], | |
metadatas=[{"source": "notion"}, {"source": "google-docs"}, {"source": "google-docs"}], | |
ids=["doc1", "doc2", "doc3"], | |
) | |
print("Database ready!") | |
print(collection.count()) | |
# Gradio-GUI | |
#------------ | |
import gradio as gr | |
import requests | |
import json | |
def response(message, history): | |
addon="" | |
results=collection.query( | |
query_texts=[message], | |
n_results=2, | |
#where={"source": "google-docs"} | |
#where_document={"$contains":"search_string"} | |
) | |
results=results['documents'][0] | |
print(results) | |
if(len(results)>1): | |
addon=" Bitte berücksichtige bei deiner Antwort ggf. folgende Auszüge aus unserer Datenbank, sofern sie für die Antwort erforderlich sind. Ingoriere unpassende Auszüge unkommentiert:\n"+"\n".join(results)+"\n\n" | |
#url="https://afischer1985-wizardlm-13b-v1-2-q4-0-gguf.hf.space/v1/completions" | |
url="http://localhost:2600/v1/completions" | |
system="Du bist ein KI-basiertes Assistenzsystem."+addon+"\n\n" | |
#body={"prompt":system+"### Instruktion:\n"+message+"\n\n### Antwort:","max_tokens":500, "echo":"False","stream":"True"} #e.g. SauerkrautLM | |
body={"prompt":"[INST]"+system+"\n"+message+"[/INST]","max_tokens":500, "echo":"False","stream":"True"} #e.g. Mixtral-Instruct | |
response="" | |
buffer="" | |
print("URL: "+url) | |
print(str(body)) | |
print("User: "+message+"\nAI: ") | |
for text in requests.post(url, json=body, stream=True): #-H 'accept: application/json' -H 'Content-Type: application/json' | |
if buffer is None: buffer="" | |
buffer=str("".join(buffer)) | |
#print("*** Raw String: "+str(text)+"\n***\n") | |
text=text.decode('utf-8') | |
if((text.startswith(": ping -")==False) & (len(text.strip("\n\r"))>0)): buffer=buffer+str(text) | |
#print("\n*** Buffer: "+str(buffer)+"\n***\n") | |
buffer=buffer.split('"finish_reason": null}]}') | |
if(len(buffer)==1): | |
buffer="".join(buffer) | |
pass | |
if(len(buffer)==2): | |
part=buffer[0]+'"finish_reason": null}]}' | |
if(part.lstrip('\n\r').startswith("data: ")): part=part.lstrip('\n\r').replace("data: ", "") | |
try: | |
part = str(json.loads(part)["choices"][0]["text"]) | |
print(part, end="", flush=True) | |
response=response+part | |
buffer="" # reset buffer | |
except Exception as e: | |
print("Exception:"+str(e)) | |
pass | |
yield response | |
gr.ChatInterface(response).queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864) | |
print("Interface up and running!") | |