AFischer1985 commited on
Commit
ddae01a
·
verified ·
1 Parent(s): 31874cf

initial commit

Browse files
Files changed (2) hide show
  1. requirements.txt +3 -0
  2. run.py +345 -0
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ llama-cpp-python[server]
2
+ chromadb
3
+ sentence_transformers
run.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #########################################################################################
2
+ # Title: Gradio Writing Assistant
3
+ # Author: Andreas Fischer
4
+ # Date: May 23th, 2024
5
+ # Last update: May 23th, 2024
6
+ ##########################################################################################
7
+
8
+ #https://github.com/abetlen/llama-cpp-python/issues/306
9
+ #sudo apt install libclblast-dev
10
+ #CMAKE_ARGS="-DLLAMA_CLBLAST=on" FORCE_CMAKE=1 pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir -v
11
+
12
+
13
+ # Prepare resources
14
+ #-------------------
15
+ import torch
16
+ import gc
17
+ torch.cuda.empty_cache()
18
+ gc.collect()
19
+
20
+
21
+ # Chroma-DB
22
+ #-----------
23
+ import os
24
+ import chromadb
25
+ dbPath = "/home/af/Schreibtisch/Code/gradio/Chroma/db"
26
+ onPrem = True if(os.path.exists(dbPath)) else False
27
+ if(onPrem==False): dbPath="/home/user/app/db"
28
+
29
+ #onPrem=True # uncomment to override automatic detection
30
+ print(dbPath)
31
+ #client = chromadb.Client()
32
+ path=dbPath
33
+ client = chromadb.PersistentClient(path=path)
34
+ print(client.heartbeat())
35
+ print(client.get_version())
36
+ print(client.list_collections())
37
+ from chromadb.utils import embedding_functions
38
+ default_ef = embedding_functions.DefaultEmbeddingFunction()
39
+ #sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
40
+ #instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")
41
+ embeddingModel = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer", device="cuda" if(onPrem) else "cpu")
42
+ print(str(client.list_collections()))
43
+
44
+ global collection
45
+ dbName="writingStyleDB1"
46
+
47
+ if("name="+dbName in str(client.list_collections())): client.delete_collection(name=dbName) # deletes collection
48
+
49
+ if("name="+dbName in str(client.list_collections())):
50
+ print(dbName+" found!")
51
+ collection = client.get_collection(name=dbName, embedding_function=embeddingModel) #sentence_transformer_ef)
52
+ else:
53
+ #client.delete_collection(name=dbName)
54
+ print(dbName+" created!")
55
+ collection = client.create_collection(
56
+ dbName,
57
+ embedding_function=embeddingModel,
58
+ metadata={"hnsw:space": "cosine"})
59
+
60
+ print("Database ready!")
61
+ print(collection.count())
62
+
63
+ x=collection.get(include=[])["ids"]
64
+ if(len(x)==0):
65
+ x=collection.get(include=[])["ids"]
66
+ collection.add(
67
+ documents=["Ich möchte einen Blogbeitrag","Ich möchte einen Gliederungsvorschlag","Ich möchte einen Social Media Beitrag"],
68
+ metadatas=[
69
+ {"prompt": "Bitte schreibe einen Blogbeitrag zur Anfrage des Users!"},
70
+ {"prompt": "Bitte entwerfe einen Gliederungsvorschlag zur Anfrage des Users!"},
71
+ {"prompt": "Bitte verfasse einen Beitrag für die professionelle social media Plattform LinkedIn zur Anfrage des Users!"}],
72
+ ids=[str(len(x)+1),str(len(x)+2),str(len(x)+3)]
73
+ )
74
+
75
+ RAGResults=collection.query(
76
+ query_texts=["Dies ist ein Test"],
77
+ n_results=1,
78
+ #where={"source": "USER"}
79
+ )
80
+ RAGResults["metadatas"][0][0]["prompt"]
81
+ x=collection.get(where_document={"$contains":"Blogbeitrag"},include=["metadatas"])['metadatas'][0]['prompt']
82
+
83
+
84
+ # Model
85
+ #-------
86
+ onPrem=False
87
+ myModel="mistralai/Mixtral-8x7B-Instruct-v0.1"
88
+ if(onPrem==False):
89
+ modelPath=myModel
90
+ from huggingface_hub import InferenceClient
91
+ import gradio as gr
92
+ client = InferenceClient(
93
+ model=modelPath,
94
+ #token="hf_..."
95
+ )
96
+ else:
97
+ import os
98
+ import requests
99
+ import subprocess
100
+ #modelPath="/home/af/gguf/models/c4ai-command-r-v01-Q4_0.gguf"
101
+ #modelPath="/home/af/gguf/models/Discolm_german_7b_v1.Q4_0.gguf"
102
+ modelPath="/home/af/gguf/models/Mixtral-8x7b-instruct-v0.1.Q4_0.gguf"
103
+ if(os.path.exists(modelPath)==False):
104
+ #url="https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF/resolve/main/discolm_german_7b_v1.Q4_0.gguf?download=true"
105
+ url="https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/resolve/main/mixtral-8x7b-instruct-v0.1.Q4_0.gguf?download=true"
106
+ response = requests.get(url)
107
+ with open("./Mixtral-8x7b-instruct.gguf", mode="wb") as file:
108
+ file.write(response.content)
109
+ print("Model downloaded")
110
+ modelPath="./Mixtral-8x7b-instruct.gguf"
111
+ print(modelPath)
112
+ n="20"
113
+ if("Mixtral-8x7b-instruct" in modelPath): n="0" # mixtral seems to cause problems here...
114
+ command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600", "--n_threads", "8", "--n_gpu_layers", n]
115
+ subprocess.Popen(command)
116
+ print("Server ready!")
117
+
118
+
119
+ # Check template
120
+ #----------------
121
+ if(False):
122
+ from transformers import AutoTokenizer
123
+ #mod="mistralai/Mixtral-8x22B-Instruct-v0.1"
124
+ #mod="mistralai/Mixtral-8x7b-instruct-v0.1"
125
+ mod="VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct"
126
+ tok=AutoTokenizer.from_pretrained(mod) #,token="hf_...")
127
+ cha=[{"role":"system","content":"A"},{"role":"user","content":"B"},{"role":"assistant","content":"C"}]
128
+ res=tok.apply_chat_template(cha)
129
+ print(tok.decode(res))
130
+ cha=[{"role":"user","content":"U1"},{"role":"assistant","content":"A1"},{"role":"user","content":"U2"},{"role":"assistant","content":"A2"}]
131
+ res=tok.apply_chat_template(cha)
132
+ print(tok.decode(res))
133
+
134
+
135
+ # Gradio-GUI
136
+ #------------
137
+ import re
138
+ def extend_prompt(message="", history=None, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4, removeHTML=True):
139
+ startOfString=""
140
+ if zeichenlimit is None: zeichenlimit=1000000000 # :-)
141
+ template0=" [INST]{system}\n [/INST] </s>"
142
+ template1=" [INST] {message} [/INST]"
143
+ template2=" {response}</s>"
144
+ if("command-r" in modelPath): #https://huggingface.co/CohereForAI/c4ai-command-r-v01
145
+ ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
146
+ template0="<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|> {system}<|END_OF_TURN_TOKEN|>"
147
+ template1="<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{message}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"
148
+ template2="{response}<|END_OF_TURN_TOKEN|>"
149
+ if("Gemma-" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
150
+ template0="<start_of_turn>user{system}</end_of_turn>"
151
+ template1="<start_of_turn>user{message}</end_of_turn><start_of_turn>model"
152
+ template2="{response}</end_of_turn>"
153
+ if("Mixtral-8x22B-Instruct" in modelPath): # AutoTokenizer: <s>[INST] U1[/INST] A1</s>[INST] U2[/INST] A2</s>
154
+ startOfString="<s>"
155
+ template0="[INST]{system}\n [/INST] </s>"
156
+ template1="[INST] {message}[/INST]"
157
+ template2=" {response}</s>"
158
+ if("Mixtral-8x7b-instruct" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
159
+ startOfString="<s>" # AutoTokenzizer: <s> [INST] U1 [/INST]A1</s> [INST] U2 [/INST]A2</s>
160
+ template0=" [INST]{system}\n [/INST] </s>"
161
+ template1=" [INST] {message} [/INST]"
162
+ template2=" {response}</s>"
163
+ if("Mistral-7B-Instruct" in modelPath): #https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
164
+ startOfString="<s>"
165
+ template0="[INST]{system}\n [/INST]</s>"
166
+ template1="[INST] {message} [/INST]"
167
+ template2=" {response}</s>"
168
+ if("Openchat-3.5" in modelPath): #https://huggingface.co/TheBloke/openchat-3.5-0106-GGUF
169
+ template0="GPT4 Correct User: {system}<|end_of_turn|>GPT4 Correct Assistant: Okay.<|end_of_turn|>"
170
+ template1="GPT4 Correct User: {message}<|end_of_turn|>GPT4 Correct Assistant: "
171
+ template2="{response}<|end_of_turn|>"
172
+ if(("Discolm_german_7b" in modelPath) or ("SauerkrautLM-7b-HerO" in modelPath)): #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO
173
+ template0="<|im_start|>system\n{system}<|im_end|>\n"
174
+ template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
175
+ template2="{response}<|im_end|>\n"
176
+ if("Llama-3-SauerkrautLM-8b-Instruct" in modelPath): #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO
177
+ template0="<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system}<|eot_id|>"
178
+ template1="<|start_header_id|>user<|end_header_id|>\n\n{message}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
179
+ template2="{response}<|eot_id|>\n"
180
+ if("WizardLM-13B-V1.2" in modelPath): #https://huggingface.co/WizardLM/WizardLM-13B-V1.2
181
+ template0="{system} " #<s>
182
+ template1="USER: {message} ASSISTANT: "
183
+ template2="{response}</s>"
184
+ if("Phi-2" in modelPath): #https://huggingface.co/TheBloke/phi-2-GGUF
185
+ template0="Instruct: {system}\nOutput: Okay.\n"
186
+ template1="Instruct: {message}\nOutput:"
187
+ template2="{response}\n"
188
+ prompt = ""
189
+ if RAGAddon is not None:
190
+ system += RAGAddon
191
+ if system is not None:
192
+ prompt += template0.format(system=system) #"<s>"
193
+ if history is not None:
194
+ for user_message, bot_response in history[-historylimit:]:
195
+ if user_message is None: user_message = ""
196
+ if bot_response is None: bot_response = ""
197
+ bot_response = re.sub("\n\n<details>((.|\n)*?)</details>","", bot_response) # remove RAG-compontents
198
+ if removeHTML==True: bot_response = re.sub("<(.*?)>","\n", bot_response) # remove HTML-components in general (may cause bugs with markdown-rendering)
199
+ if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit])
200
+ if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit])
201
+ if message is not None: prompt += template1.format(message=message[:zeichenlimit])
202
+ if system2 is not None:
203
+ prompt += system2
204
+ return startOfString+prompt
205
+
206
+
207
+ import gradio as gr
208
+ import requests
209
+ import json
210
+ from datetime import datetime
211
+ import os
212
+ import re
213
+
214
+ def response(message, history,customSysPrompt, genre, hfToken):
215
+ if((onPrem==False) & (hfToken.startswith("hf_"))): # use HF-hub with custom token if token is provided
216
+ from huggingface_hub import InferenceClient
217
+ import gradio as gr
218
+ client = InferenceClient(
219
+ model=myModel,
220
+ token=hfToken
221
+ )
222
+ removeHTML=True
223
+ system=customSysPrompt # system-prompt can be changed in the UI (usually defaults to something like the following system-prompt)
224
+ if(system==""): system="Du bist wissenschaftlicher Mitarbeiter an einem Forschungsinstitut und zuständig für die Wissenschaftskommunikation."
225
+ message=message.replace("[INST]","")
226
+ message=message.replace("[/INST]","")
227
+ message=message.replace("</s>","")
228
+ message=re.sub("<[|](im_start|im_end|end_of_turn)[|]>", '', message)
229
+ x=collection.get(include=[])["ids"]
230
+ rag=None # RAG is turned off until history gets too long
231
+ historylimit=2
232
+ if(genre==""): # use RAG to define genre if there is none
233
+ RAGResults=collection.query(query_texts=[message], n_results=1)
234
+ genre=str(RAGResults['documents'][0][0]) # determine genre based on best-matching db-entry
235
+
236
+ rag="\n\n"+collection.get(where_document={"$contains":genre},include=["metadatas"])['metadatas'][0]['prompt'] # genre-specific addendum to system prompt (rag)
237
+ if(len(history)>0):
238
+ rag=rag+"\nFalls der User Rückfragen oder Änderungsvorschläge zu deinem Entwurf hat, gehe darauf ein." # add dialog-specific addendum to rag
239
+
240
+ system2=None # system2 can be used as fictive first words of the AI, which are not displayed or stored
241
+ prompt=extend_prompt(
242
+ message, # current message of the user
243
+ history, # complete history
244
+ system, # system prompt
245
+ rag, # RAG-component added to the system prompt
246
+ system2, # fictive first words of the AI (neither displayed nor stored)
247
+ historylimit=historylimit,# number of past messages to consider for response to current message
248
+ removeHTML=removeHTML # remove HTML-components from History (to prevent bugs with Markdown)
249
+ )
250
+ if(True):
251
+ print("\n\nMESSAGE:"+str(message))
252
+ print("\n\nHISTORY:"+str(history))
253
+ print("\n\nSYSTEM:"+str(system))
254
+ print("\n\nRAG:"+str(rag))
255
+ print("\n\nSYSTEM2:"+str(system2))
256
+ print("\n\n*** Prompt:\n"+prompt+"\n***\n\n")
257
+
258
+ ## Request response from model
259
+ #------------------------------
260
+
261
+ print("AI running on prem!" if(onPrem) else "AI running HFHub!")
262
+ if(onPrem==False):
263
+ temperature=float(0.9)
264
+ max_new_tokens=1000
265
+ top_p=0.95
266
+ repetition_penalty=1.0
267
+ if temperature < 1e-2: temperature = 1e-2
268
+ top_p = float(top_p)
269
+ generate_kwargs = dict(
270
+ temperature=temperature,
271
+ max_new_tokens=max_new_tokens,
272
+ top_p=top_p,
273
+ repetition_penalty=repetition_penalty,
274
+ do_sample=True,
275
+ seed=42,
276
+ )
277
+ stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
278
+ response = ""
279
+ #print("User: "+message+"\nAI: ")
280
+ for text in stream:
281
+ part=text.token.text
282
+ #print(part, end="", flush=True)
283
+ response += part
284
+ if removeHTML==True: response = re.sub("<(.*?)>","\n", response) # remove HTML-components in general (may cause bugs with markdown-rendering)
285
+ yield response
286
+
287
+ if(onPrem==True):
288
+ # url="https://afischer1985-wizardlm-13b-v1-2-q4-0-gguf.hf.space/v1/completions"
289
+ url="http://0.0.0.0:2600/v1/completions"
290
+ body={"prompt":prompt,"max_tokens":None, "echo":"False","stream":"True"} # e.g. Mixtral-Instruct
291
+ if("Discolm_german_7b" in modelPath): body.update({"stop": ["<|im_end|>"]}) # fix stop-token of DiscoLM
292
+ if("Gemma-" in modelPath): body.update({"stop": ["<|im_end|>","</end_of_turn>"]}) # fix stop-token of Gemma
293
+ response="" #+"("+myType+")\n"
294
+ buffer=""
295
+ #print("URL: "+url)
296
+ #print("User: "+message+"\nAI: ")
297
+ for text in requests.post(url, json=body, stream=True): #-H 'accept: application/json' -H 'Content-Type: application/json'
298
+ if buffer is None: buffer=""
299
+ buffer=str("".join(buffer))
300
+ # print("*** Raw String: "+str(text)+"\n***\n")
301
+ text=text.decode('utf-8')
302
+ if((text.startswith(": ping -")==False) & (len(text.strip("\n\r"))>0)): buffer=buffer+str(text)
303
+ # print("\n*** Buffer: "+str(buffer)+"\n***\n")
304
+ buffer=buffer.split('"finish_reason": null}]}')
305
+ if(len(buffer)==1):
306
+ buffer="".join(buffer)
307
+ pass
308
+ if(len(buffer)==2):
309
+ part=buffer[0]+'"finish_reason": null}]}'
310
+ if(part.lstrip('\n\r').startswith("data: ")): part=part.lstrip('\n\r').replace("data: ", "")
311
+ try:
312
+ part = str(json.loads(part)["choices"][0]["text"])
313
+ #print(part, end="", flush=True)
314
+ response=response+part
315
+ buffer="" # reset buffer
316
+ except Exception as e:
317
+ print("Exception:"+str(e))
318
+ pass
319
+ if removeHTML==True: response = re.sub("<(.*?)>","\n", response) # remove HTML-components in general (may cause bugs with markdown-rendering)
320
+ yield response
321
+ history.append((message, response)) # add current dialog to history
322
+
323
+ val=None
324
+ gr.ChatInterface(
325
+ response,
326
+ chatbot=gr.Chatbot(value=val, render_markdown=True),
327
+ title="KI Schreibassistenz (on prem)" if onPrem else "KI Schreibassistenz (HFHub)",
328
+ additional_inputs=[
329
+ gr.Textbox(
330
+ value="Du bist wissenschaftlicher Mitarbeiter an einem Forschungsinstitut und zuständig für die Wissenschaftskommunikation.",
331
+ label="System Prompt"),
332
+ gr.Dropdown(
333
+ ["Blogbeitrag","Gliederungsvorschlag","Social Media Beitrag",""],
334
+ value="Blogbeitrag",
335
+ label="Genre"),
336
+ gr.Textbox(
337
+ value="",
338
+ label="HF_token"),
339
+ ]
340
+ ).queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864)
341
+ print("Interface up and running!")
342
+
343
+
344
+
345
+