Spaces:
Sleeping
Sleeping
File size: 6,193 Bytes
85ab89d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import os
import sys
import torch
from torch.utils.data import Dataset
import json
import numpy as np
from torch.utils.data.dataloader import default_collate
import time
class ESMDataset(Dataset):
def __init__(self, pdb_root, seq_root, ann_paths, dataset_description, chain="A"):
"""
pdb_root (string): Root directory of protein pdb embeddings (e.g. xyz/pdb/)
seq_root (string): Root directory of sequences embeddings (e.g. xyz/seq/)
ann_root (string): directory to store the annotation file
dataset_description (string): json file that describes what data are used for training/testing
"""
data_describe = json.load(open(dataset_description, "r"))
train_set = set(data_describe["train"])
self.pdb_root = pdb_root
self.seq_root = seq_root
self.annotation = json.load(open(ann_paths, "r"))
keep = []
for i in range(0, len(self.annotation)):
if (self.annotation[i]["pdb_id"] in train_set):
keep.append(self.annotation[i])
self.annotation = keep
self.pdb_ids = {}
self.chain = chain
def __len__(self):
return len(self.annotation)
def __getitem__(self, index):
ann = self.annotation[index]
pdb_embedding = '{}.pt'.format(ann["pdb_id"])
pdb_embedding_path = os.path.join(self.pdb_root, pdb_embedding)
pdb_embedding = torch.load(
pdb_embedding_path, map_location=torch.device('cpu'))
# pdb_embedding_path, map_location=torch.device('cuda'))
pdb_embedding.requires_grad = False
seq_embedding = '{}.pt'.format(ann["pdb_id"])
seq_embedding_path = os.path.join(self.seq_root, seq_embedding)
seq_embedding = torch.load(
seq_embedding_path, map_location=torch.device('cpu'))
# seq_embedding_path, map_location=torch.device('cuda'))
seq_embedding.requires_grad = False
caption = ann["caption"]
return {
"text_input": caption,
"pdb_encoder_out": pdb_embedding,
"seq_encoder_out": seq_embedding,
"chain": self.chain,
"pdb_id": ann["pdb_id"]
}
# Yijia please check :)
# def collater(self, samples):
# # print(samples)
# max_len_pdb_dim0 = -1
# max_len_seq_dim0 = -1
# for pdb_json in samples:
# pdb_embeddings = pdb_json["pdb_encoder_out"]
# shape_dim0 = pdb_embeddings.shape[0]
# max_len_pdb_dim0 = max(max_len_pdb_dim0, shape_dim0)
# seq_embeddings = pdb_json["seq_encoder_out"]
# shape_dim0 = seq_embeddings.shape[0]
# max_len_seq_dim0 = max(max_len_seq_dim0, shape_dim0)
# for pdb_json in samples:
# pdb_embeddings = pdb_json["pdb_encoder_out"]
# shape_dim0 = pdb_embeddings.shape[0]
# pad1 = ((0, max_len_pdb_dim0 - shape_dim0), (0, 0), (0, 0))
# arr1_padded = np.pad(pdb_embeddings, pad1, mode='constant', )
# pdb_json["pdb_encoder_out"] = arr1_padded
# seq_embeddings = pdb_json["seq_encoder_out"]
# shape_dim0 = seq_embeddings.shape[0]
# pad1 = ((0, max_len_seq_dim0 - shape_dim0), (0, 0), (0, 0))
# arr1_padded = np.pad(seq_embeddings, pad1, mode='constant', )
# pdb_json["seq_encoder_out"] = arr1_padded
# print(samples[0].keys())
# return default_collate(samples)
def collater(self, samples):
max_len_pdb_dim0 = max(pdb_json["pdb_encoder_out"].shape[0] for pdb_json in samples)
max_len_seq_dim0 = max(pdb_json["seq_encoder_out"].shape[0] for pdb_json in samples)
for pdb_json in samples:
pdb_embeddings = pdb_json["pdb_encoder_out"]
pad_pdb = ((0, max_len_pdb_dim0 - pdb_embeddings.shape[0]), (0, 0), (0, 0))
pdb_json["pdb_encoder_out"] = torch.tensor(np.pad(pdb_embeddings, pad_pdb, mode='constant'))
seq_embeddings = pdb_json["seq_encoder_out"]
pad_seq = ((0, max_len_seq_dim0 - seq_embeddings.shape[0]), (0, 0), (0, 0))
pdb_json["seq_encoder_out"] = torch.tensor(np.pad(seq_embeddings, pad_seq, mode='constant'))
return default_collate(samples)
# import os
# import sys
# import torch
# from torch.utils.data import Dataset
# import json
# import numpy as np
# from torch.utils.data.dataloader import default_collate
# import time
# class ESMDataset(Dataset):
# def __init__(self, pdb_root, ann_paths, chain="A"):
# """
# protein (string): Root directory of protein (e.g. coco/images/)
# ann_root (string): directory to store the annotation file
# """
# self.pdb_root = pdb_root
# self.annotation = json.load(open(ann_paths, "r"))
# self.pdb_ids = {}
# self.chain = chain
# def __len__(self):
# return len(self.annotation)
# def __getitem__(self, index):
# ann = self.annotation[index]
# protein_embedding = '{}.pt'.format(ann["pdb_id"])
# protein_embedding_path = os.path.join(self.pdb_root, protein_embedding)
# protein_embedding = torch.load(protein_embedding_path, map_location=torch.device('cpu'))
# protein_embedding.requires_grad = False
# caption = ann["caption"]
# return {
# "text_input": caption,
# "encoder_out": protein_embedding,
# "chain": self.chain,
# "pdb_id": ann["pdb_id"]
# }
# def collater(self, samples):
# max_len_protein_dim0 = -1
# for pdb_json in samples:
# pdb_embeddings = pdb_json["encoder_out"]
# shape_dim0 = pdb_embeddings.shape[0]
# max_len_protein_dim0 = max(max_len_protein_dim0, shape_dim0)
# for pdb_json in samples:
# pdb_embeddings = pdb_json["encoder_out"]
# shape_dim0 = pdb_embeddings.shape[0]
# pad1 = ((0, max_len_protein_dim0 - shape_dim0), (0, 0), (0, 0))
# arr1_padded = np.pad(pdb_embeddings, pad1, mode='constant', )
# pdb_json["encoder_out"] = arr1_padded
# return default_collate(samples) |