Spaces:
Running
Running
File size: 3,948 Bytes
85ab89d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import argparse
import os
import random
import sys
import time
import tqdm
sys.path.insert(0, "..")
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from minigpt4.common.config import Config
from minigpt4.common.dist_utils import get_rank
from minigpt4.common.registry import registry
from minigpt4.conversation.conversation_esm import Chat, CONV_VISION
# imports modules for registration
from minigpt4.datasets.builders import *
from minigpt4.models import *
from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *
import sys
import esm
import json
DATASET_SPEC = "/home/ubuntu/proteinchat/dataset.json"
ANN_PATH = "/home/ubuntu/proteinchat/data/qa_all.json"
PDB_PATH = "/home/ubuntu/pt"
SEQ_PATH = "/home/ubuntu/seq"
OUTPUT_SAVE_PATH = "/home/ubuntu/proteinchat/eval/results/outputs"
annotation = open(ANN_PATH, "r")
annotation = json.load(annotation)
dataset = open(DATASET_SPEC, "r")
dataset = json.load(dataset)
all_prots = dataset["test"]
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
parser.add_argument("--model", type=str, required=True, help="specify the model to load the model.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
print('Initializing Chat')
args = parse_args()
cfg = Config(args)
model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
print('Initialization Finished')
raw_output = {}
score_output = {}
START_SAMPLES = 0
# END_SAMPLES = 8806
END_SAMPLES = 160
all_prots = all_prots[START_SAMPLES : END_SAMPLES]
for prot in tqdm.tqdm(all_prots):
curr_prot_ann = annotation[prot]
pdb_path = os.path.join(PDB_PATH, f"{prot}.pt")
seq_path = os.path.join(SEQ_PATH, f"{prot}.pt")
seq_embedding = torch.load(seq_path, map_location=torch.device('cpu'))
sample_seq = seq_embedding.to('cuda:{}'.format(args.gpu_id))
if (seq_embedding.shape[1] > 384):
continue
raw_output[prot] = []
pdb_embedding = torch.load(pdb_path, map_location=torch.device('cpu'))
sample_pdb = pdb_embedding.to('cuda:{}'.format(args.gpu_id))
for ann in curr_prot_ann:
d = {}
d["Q"] = ann["Q"]
chat_state = CONV_VISION.copy()
img_list = []
llm_message = chat.upload_protein(sample_pdb, sample_seq, chat_state, img_list)
img_list = [mat.half() for mat in img_list]
chat.ask(ann["Q"], chat_state)
ans = chat.answer(conv=chat_state,
img_list=img_list,
num_beams=1,
temperature=0.7,
max_new_tokens=384,
max_length=2048)[0]
d["A"] = ans
raw_output[prot].append(d)
with open(os.path.join(OUTPUT_SAVE_PATH, f"{args.model}_eval_output.json"), 'w') as fp:
json.dump(raw_output, fp, indent=4) |