Spaces:
Running
Running
File size: 4,173 Bytes
85ab89d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import argparse
import os
import random
import time
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import gradio as gr
import esm
from minigpt4.common.config import Config
from minigpt4.common.dist_utils import get_rank
from minigpt4.common.registry import registry
from minigpt4.conversation.conversation_esm import Chat, CONV_VISION
import json
# Imports PIL module
from PIL import Image
# imports modules for registration
from minigpt4.datasets.builders import *
from minigpt4.models import *
from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *
import esm
import esm.inverse_folding
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
# parser.add_argument("--json-path", default='/home/h5guo/shared/Mini-GPT4/coco_json/cocoval2014_img_prompt.json', help="path to the classification json file")
# parser.add_argument("--caption-save-path", default='/home/h5guo/shared/Mini-GPT4/coco_json_result/results.json', help="path to saved generated captions")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
# ========================================
# Model Initialization
# ========================================
print('Initializing Chat')
args = parse_args()
cfg = Config(args)
model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
print('Initialization Finished')
# ========================================
# Gradio Setting
# ========================================
def gradio_reset(chat_state, img_list):
if chat_state is not None:
chat_state.messages = []
if img_list is not None:
img_list = []
return chat_state, img_list
def upload_protein(gr_img):
chat_state = CONV_VISION.copy()
img_list = []
llm_message = chat.upload_protein(gr_img, chat_state, img_list)
return chat_state, img_list
def gradio_ask(user_message, chat_state):
chat.ask(user_message, chat_state)
return chat_state
def gradio_answer(chat_state, img_list, num_beams=1, temperature=1e-3):
llm_message = chat.answer(conv=chat_state,
img_list=img_list,
num_beams=num_beams,
temperature=temperature,
max_new_tokens=300,
max_length=2000)[0]
return llm_message, chat_state, img_list
if __name__ == "__main__":
start = time.time()
print("******************")
protein_embedding_path = "/home/h5guo/data/esm_subset/pt/2wge.pt"
protein_embedding = torch.load(protein_embedding_path, map_location=torch.device('cpu'))
sample_protein = protein_embedding.to('cuda:{}'.format(args.gpu_id))
user_message = "Describe this protein in a short paragraph."
chat_state, img_list = upload_protein(sample_protein)
chat_state = gradio_ask(user_message, chat_state)
llm_message, chat_state, img_list = gradio_answer(chat_state, img_list)
print(f"llm_message: {llm_message}")
end = time.time()
print(end - start)
# i += 1
print("******************")
# f.close()
|