File size: 1,902 Bytes
85ab89d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from openai import OpenAI
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from sentence_transformers import SentenceTransformer

class Embed_Eval:
    def __init__(self, model="gpt"):
        self.client = OpenAI()
        self.model = model
        self.BERT_embed_model = ""
        if "pubmedbert" in self.model:
            self.BERT_embed_model = SentenceTransformer("neuml/pubmedbert-base-embeddings")

    def get_embedding(self, text): 
        text = text.replace("\n", " ")
        if "gpt" in self.model:
            return self.client.embeddings.create(input = [text], model="text-embedding-3-large").data[0].embedding
        if "pubmedbert" in self.model:
            embeddings = self.BERT_embed_model.encode(text)
            return embeddings 

    def compute(self, predictions, references):
        ref_embeddings = [self.get_embedding(sent) for sent in references]
        pred_embeddings = [self.get_embedding(sent) for sent in predictions]

        # Compute pairwise cosine similarities
        similarity_matrix = cosine_similarity(ref_embeddings, pred_embeddings)

        # Get maximum similarity for each token in ref
        ref_max_similarities = np.max(similarity_matrix, axis=1)

        # Get maximum similarity for each token in pred
        pred_max_similarities = np.max(similarity_matrix, axis=0)

        # Compute precision, recall, and F1 score
        precision = np.mean(pred_max_similarities)
        recall = np.mean(ref_max_similarities)
        f1_score = 2 * (precision * recall) / (precision + recall + 1e-8)

        return {'precision': precision, 'recall': recall, 'f1_score': f1_score}

if __name__ == "__main__":
    gpt = Embed_Eval(model="gpt")
    pubmedbert = Embed_Eval(model="pubmedbert")
    print(gpt.compute(predictions="hello", references="hi"))
    print(pubmedbert.compute(predictions="hello", references="hi"))