Spaces:
Sleeping
Sleeping
import argparse | |
import time | |
from PIL import Image | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer | |
from transformers import StoppingCriteria, StoppingCriteriaList | |
import dataclasses | |
from enum import auto, Enum | |
from typing import List, Tuple, Any | |
from einops import rearrange, reduce, repeat | |
from minigpt4.common.registry import registry | |
class SeparatorStyle(Enum): | |
"""Different separator style.""" | |
SINGLE = auto() | |
TWO = auto() | |
class Conversation: | |
"""A class that keeps all conversation history.""" | |
system: str | |
roles: List[str] | |
messages: List[List[str]] | |
offset: int | |
# system_img: List[Image.Image] = [] | |
sep_style: SeparatorStyle = SeparatorStyle.SINGLE | |
sep: str = "###" | |
sep2: str = None | |
skip_next: bool = False | |
conv_id: Any = None | |
def get_prompt(self): | |
if self.sep_style == SeparatorStyle.SINGLE: | |
ret = self.system + self.sep | |
for role, message in self.messages: | |
if message: | |
ret += role + ": " + message + self.sep | |
else: | |
ret += role + ":" | |
return ret | |
elif self.sep_style == SeparatorStyle.TWO: | |
seps = [self.sep, self.sep2] | |
ret = self.system + seps[0] | |
for i, (role, message) in enumerate(self.messages): | |
if message: | |
ret += role + ": " + message + seps[i % 2] | |
else: | |
ret += role + ":" | |
return ret | |
else: | |
raise ValueError(f"Invalid style: {self.sep_style}") | |
def append_message(self, role, message): | |
self.messages.append([role, message]) | |
def to_gradio_chatbot(self): | |
ret = [] | |
for i, (role, msg) in enumerate(self.messages[self.offset:]): | |
if i % 2 == 0: | |
ret.append([msg, None]) | |
else: | |
ret[-1][-1] = msg | |
return ret | |
def copy(self): | |
return Conversation( | |
system=self.system, | |
# system_img=self.system_img, | |
roles=self.roles, | |
messages=[[x, y] for x, y in self.messages], | |
offset=self.offset, | |
sep_style=self.sep_style, | |
sep=self.sep, | |
sep2=self.sep2, | |
conv_id=self.conv_id) | |
def dict(self): | |
return { | |
"system": self.system, | |
# "system_img": self.system_img, | |
"roles": self.roles, | |
"messages": self.messages, | |
"offset": self.offset, | |
"sep": self.sep, | |
"sep2": self.sep2, | |
"conv_id": self.conv_id, | |
} | |
class StoppingCriteriaSub(StoppingCriteria): | |
def __init__(self, stops=[], encounters=1): | |
super().__init__() | |
self.stops = stops | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor): | |
for stop in self.stops: | |
if torch.all((stop == input_ids[0][-len(stop):])).item(): | |
return True | |
return False | |
CONV_VISION = Conversation( | |
system="Give the following protein: <protein>proteinContent</protein>. " | |
"Please answer my questions.", | |
roles=("Human", "Assistant"), | |
messages=[], | |
offset=2, | |
sep_style=SeparatorStyle.SINGLE, | |
sep="###", | |
) | |
class Chat: | |
def __init__(self, model, vis_processor, device='cuda:0'): | |
self.device = device | |
self.model = model | |
self.vis_processor = vis_processor | |
stop_words_ids = [torch.tensor([835]).to(self.device), | |
torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways. | |
self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)]) | |
def ask(self, text, conv): | |
if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \ | |
and conv.messages[-1][1][-6:] == '</protein>': # last message is image. | |
conv.messages[-1][1] = ' '.join([conv.messages[-1][1], text]) | |
else: | |
conv.append_message(conv.roles[0], text) | |
def answer(self, conv, img_list, max_new_tokens=300, num_beams=1, min_length=1, top_p=0.9, | |
repetition_penalty=1.0, length_penalty=1, temperature=1.0, max_length=2000): | |
conv.append_message(conv.roles[1], None) | |
embs = self.get_context_emb(conv, img_list) | |
current_max_len = embs.shape[1] + max_new_tokens | |
if current_max_len - max_length > 0: | |
print('Warning: The number of tokens in current conversation exceeds the max length. ' | |
'The model will not see the contexts outside the range.') | |
begin_idx = max(0, current_max_len - max_length) | |
embs = embs[:, begin_idx:] | |
outputs = self.model.llama_model.generate( | |
inputs_embeds=embs, | |
max_new_tokens=max_new_tokens, | |
stopping_criteria=self.stopping_criteria, | |
num_beams=num_beams, | |
do_sample=False, | |
min_length=min_length, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
length_penalty=length_penalty, | |
temperature=temperature, | |
) | |
output_token = outputs[0] | |
if output_token[0] == 0: # the model might output a unknow token <unk> at the beginning. remove it | |
output_token = output_token[1:] | |
if output_token[0] == 1: # some users find that there is a start token <s> at the beginning. remove it | |
output_token = output_token[1:] | |
#print(output_token) | |
output_text = self.model.llama_tokenizer.decode(output_token, add_special_tokens=False) | |
output_text = output_text.split('###')[0] # remove the stop sign '###' | |
output_text = output_text.split('Assistant:')[-1].strip() | |
conv.messages[-1][1] = output_text | |
return output_text, output_token.cpu().numpy() | |
def upload_protein(self, pdb, seq, conv, protein_list): | |
pdb_emb, _ = self.model.encode_protein_struct(pdb) | |
seq_emb, _ = self.model.encode_protein_seq(seq) | |
pdb_emb = rearrange(pdb_emb, 't b c -> b t c') | |
#print(pdb_emb.shape) | |
#print(seq_emb.shape) | |
protein_emb = torch.cat([pdb_emb, seq_emb], dim=1) | |
protein_list.append(protein_emb) | |
conv.append_message(conv.roles[0], "<protein><proteinHere></protein>") | |
msg = "Received." | |
# self.conv.append_message(self.conv.roles[1], msg) | |
return msg | |
def get_context_emb(self, conv, img_list): | |
#print('IMG LENGTH', len(img_list)) | |
prompt = conv.get_prompt() | |
prompt_segs = prompt.split('<proteinHere>') | |
assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of protein placeholders and proteins." | |
seg_tokens = [ | |
self.model.llama_tokenizer( | |
seg, return_tensors="pt", add_special_tokens=i == 0).to(self.device).input_ids | |
# only add bos to the first seg | |
for i, seg in enumerate(prompt_segs) | |
] | |
seg_embs = [self.model.llama_model.model.embed_tokens(seg_t) for seg_t in seg_tokens] | |
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]] | |
#for emb in mixed_embs: | |
# print(emb.shape) | |
mixed_embs = torch.cat(mixed_embs, dim=1) | |
return mixed_embs | |