Spaces:
Sleeping
Sleeping
import logging | |
import random | |
import torch | |
from torch.cuda.amp import autocast as autocast | |
import torch.nn as nn | |
import sys | |
from minigpt4.common.registry import registry | |
from minigpt4.models.blip2 import Blip2Base, disabled_train | |
from minigpt4.models.modeling_llama import LlamaForCausalLM | |
from transformers import LlamaTokenizer | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
class MiniGPT4(Blip2Base): | |
""" | |
BLIP2 GPT-LLAMA model. | |
""" | |
PRETRAINED_MODEL_CONFIG_DICT = { | |
"pretrain_vicuna": "../configs/minigpt4.yaml", # "configs/models/minigpt4.yaml", | |
} | |
def __init__( | |
self, | |
llama_model="", | |
prompt_template="", | |
max_txt_len=32, | |
end_sym='\n', | |
low_resource=False, # use 8 bit and put vit in cpu | |
device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore. | |
): | |
super().__init__() | |
self.tokenizer = self.init_tokenizer() | |
self.low_resource = low_resource | |
print('Loading LLAMA') | |
self.llama_tokenizer = AutoTokenizer.from_pretrained(llama_model, use_fast=False) | |
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token | |
if self.low_resource: | |
self.llama_model = AutoModelForCausalLM.from_pretrained( | |
llama_model, | |
torch_dtype=torch.float16, | |
load_in_8bit=True, | |
device_map={'': device_8bit} | |
) | |
else: | |
self.llama_model = AutoModelForCausalLM.from_pretrained( | |
llama_model, | |
torch_dtype=torch.float16, | |
) | |
for name, param in self.llama_model.named_parameters(): | |
param.requires_grad = False | |
print('Loading LLAMA Done') | |
self.esm_struct_llama_proj = nn.Linear( | |
512, self.llama_model.config.hidden_size | |
) | |
self.esm_seq_llama_proj = nn.Linear( | |
# 1280, self.llama_model.config.hidden_size | |
2560, self.llama_model.config.hidden_size | |
) | |
self.max_txt_len = max_txt_len | |
self.end_sym = end_sym | |
self.prompt_template = prompt_template | |
def encode_protein_struct(self, protein_struct_encode): | |
device = protein_struct_encode.device | |
protein_embeds = protein_struct_encode.to(device) | |
# input llama shape: [B, 32, 5120] | |
inputs_llama = self.esm_struct_llama_proj(protein_embeds.squeeze(dim=2)) | |
# atts_llama shape: [B, 32] | |
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(device) | |
return inputs_llama, atts_llama | |
def encode_protein_seq(self, protein_seq_encode): | |
device = protein_seq_encode.device | |
protein_embeds = protein_seq_encode.to(device) | |
# input llama is of shape [B, 32, 5120] | |
inputs_llama = self.esm_seq_llama_proj(protein_embeds.squeeze(dim=2)) | |
# atts_llama is of shape [B, 32] | |
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(device) | |
return inputs_llama, atts_llama | |
def prompt_wrap(self, img_embeds, atts_img, prompt): | |
if prompt: | |
batch_size = img_embeds.shape[0] | |
p_before, p_after = prompt.split('<proteinHere>') | |
p_before_tokens = self.llama_tokenizer( | |
p_before, return_tensors="pt", add_special_tokens=False).to(img_embeds.device) | |
p_after_tokens = self.llama_tokenizer( | |
p_after, return_tensors="pt", add_special_tokens=False).to(img_embeds.device) | |
p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) | |
p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1) | |
# print(p_before_embeds.shape, img_embeds.shape, p_after_embeds.shape) | |
wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds, p_after_embeds], dim=1) | |
wrapped_atts_img = atts_img[:, :1].expand(-1, wrapped_img_embeds.shape[1]) | |
return wrapped_img_embeds, wrapped_atts_img | |
else: | |
return img_embeds, atts_img | |
def forward(self, samples): | |
# structure | |
pdb_encode = samples["pdb_encoder_out"] | |
pdb_device = pdb_encode.device | |
pdb_encode = pdb_encode[0] | |
pdb_encode = pdb_encode.permute(1, 0, 2) # Reshape [X, 1, Y] -> [1, X, Y] | |
pdb_embeds, atts_pdb = self.encode_protein_struct(pdb_encode) | |
# sequence | |
seq_encode = samples["seq_encoder_out"] | |
seq_device = seq_encode.device | |
seq_encode = seq_encode[0] | |
seq_embeds, atts_seq = self.encode_protein_seq(seq_encode) | |
img_embeds = torch.cat([pdb_embeds, seq_embeds], dim=1) | |
atts_img = torch.cat([atts_pdb, atts_seq], dim=1) | |
# skips over this branch for stage 1 and 2 | |
if hasattr(samples, 'question_split'): # VQA dataset | |
print('VQA Batch') | |
vqa_prompt = '###Human: <protein><proteinHere></protein> ' | |
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img, vqa_prompt) | |
# TO check: print out when needed (run stage 2 and print out some stuff to see which branch it goes to) | |
elif "q_input" in samples: # prompt path (alignment.txt provided) then takes this path to random choose form the list | |
prompt = self.prompt_template.format("<protein><proteinHere></protein> " + samples["q_input"][0]) | |
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img, prompt) | |
# stage 1 directly skip the branches above | |
self.llama_tokenizer.padding_side = "right" | |
text = [] | |
if "q_input" in samples: | |
text = [t + self.end_sym for t in samples["a_input"]] | |
else: | |
text = [t + self.end_sym for t in samples["text_input"]] | |
to_regress_tokens = self.llama_tokenizer( | |
text, | |
return_tensors="pt", | |
padding="longest", | |
truncation=True, | |
max_length=self.max_txt_len, | |
add_special_tokens=False | |
).to(pdb_device) | |
targets = to_regress_tokens.input_ids.masked_fill( | |
to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100 | |
) | |
empty_targets = ( | |
torch.ones([atts_img.shape[0], atts_img.shape[1]+1], | |
dtype=torch.long).to(pdb_device).fill_(-100) # plus one for bos | |
) | |
targets = torch.cat([empty_targets, targets], dim=1) | |
batch_size = img_embeds.shape[0] | |
bos = torch.ones([batch_size, 1], | |
dtype=to_regress_tokens.input_ids.dtype, | |
device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id | |
bos_embeds = self.llama_model.model.embed_tokens(bos) | |
atts_bos = atts_img[:, :1] | |
to_regress_embeds = self.llama_model.model.embed_tokens(to_regress_tokens.input_ids) | |
inputs_embeds = torch.cat([bos_embeds, img_embeds, to_regress_embeds], dim=1) | |
attention_mask = torch.cat([atts_bos, atts_img, to_regress_tokens.attention_mask], dim=1) | |
with self.maybe_autocast(): | |
outputs = self.llama_model( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
return_dict=True, | |
labels=targets, | |
) | |
loss = outputs.loss | |
return {"loss": loss} | |
def from_config(cls, cfg): | |
vit_model = cfg.get("vit_model", "eva_clip_g") | |
q_former_model = cfg.get("q_former_model", "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth") | |
img_size = cfg.get("image_size") | |
num_query_token = cfg.get("num_query_token") | |
llama_model = cfg.get("llama_model") | |
drop_path_rate = cfg.get("drop_path_rate", 0) | |
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False) | |
vit_precision = cfg.get("vit_precision", "fp16") | |
freeze_protein_encoder = cfg.get("freeze_protein_encoder", True) | |
freeze_qformer = cfg.get("freeze_qformer", True) | |
low_resource = cfg.get("low_resource", False) | |
device_8bit = cfg.get("device_8bit", 0) | |
prompt_template = cfg.get("prompt_template", "") | |
max_txt_len = cfg.get("max_txt_len", 32) | |
end_sym = cfg.get("end_sym", '\n') | |
model = cls( | |
llama_model=llama_model, | |
prompt_template=prompt_template, | |
max_txt_len=max_txt_len, | |
end_sym=end_sym, | |
low_resource=low_resource, | |
device_8bit=device_8bit, | |
) | |
ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4 | |
if ckpt_path: | |
print("Load BLIP2-LLM Checkpoint: {}".format(ckpt_path)) | |
ckpt = torch.load(ckpt_path, map_location="cpu") | |
msg = model.load_state_dict(ckpt['model'], strict=False) | |
return model | |