Spaces:
Running
Running
import gradio as gr | |
import argparse | |
import os | |
import random | |
import numpy as np | |
import torch | |
import torch.backends.cudnn as cudnn | |
from minigpt4.common.config import Config | |
from minigpt4.common.dist_utils import get_rank | |
from minigpt4.common.registry import registry | |
from minigpt4.conversation.conversation_esm import Chat, CONV_VISION | |
import esm | |
# ProteinGPT Initialization Function | |
def initialize_chat(args): | |
cfg = Config(args) | |
model_config = cfg.model_cfg | |
model_config.device_8bit = 0 | |
model_cls = registry.get_model_class(model_config.arch) | |
model = model_cls.from_config(model_config).to('cpu') | |
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train | |
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) | |
chat = Chat(model, vis_processor, device='cpu') | |
return chat | |
# Gradio Reset Function | |
def gradio_reset(chat_state, img_list): | |
if chat_state is not None: | |
chat_state.messages = [] | |
if img_list is not None: | |
img_list = [] | |
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your protein structure and sequence first', interactive=False), gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list | |
# Upload Function | |
def upload_protein(structure, sequence, text_input, chat_state): | |
# Check if structure and sequence files are valid | |
if structure is None or not structure.endswith(".pt"): | |
return (None, None, None, gr.update(placeholder="Invalid structure file, must be a .pt file.", interactive=True), chat_state, None) | |
if sequence is None or not sequence.endswith(".pt"): | |
return (None, None, None, gr.update(placeholder="Invalid sequence file, must be a .pt file.", interactive=True), chat_state, None) | |
# Load protein structure and sequence | |
pdb_embedding = torch.load(structure, map_location=torch.device('cpu')) | |
sample_pdb = pdb_embedding.to('cpu') | |
seq_embedding = torch.load(sequence, map_location=torch.device('cpu')) | |
sample_seq = seq_embedding.to('cpu') | |
# Initialize the conversation state | |
chat_state = CONV_VISION.copy() | |
img_list = [] | |
# Upload protein data | |
llm_message = chat.upload_protein(sample_pdb, sample_seq, chat_state, img_list) | |
# Return the required outputs | |
return (gr.update(interactive=False), # Disable structure file input | |
gr.update(interactive=False), # Disable sequence file input | |
gr.update(interactive=True, placeholder='Type and press Enter'), # Enable the text input box | |
gr.update(value="Start Chatting", interactive=False), # Update upload button state | |
chat_state, # Return the conversation state | |
img_list) # Return the list of images (if any) | |
# Ask Function | |
def gradio_ask(user_message, chatbot, chat_state): | |
if len(user_message) == 0: | |
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state | |
chat.ask(user_message, chat_state) | |
chatbot = chatbot + [[user_message, None]] | |
return '', chatbot, chat_state | |
# Answer Function | |
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature): | |
img_list = [mat.half() for mat in img_list] | |
llm_message = chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=300, num_beams=num_beams, temperature=temperature, max_length=2000)[0] | |
chatbot[-1][1] = llm_message | |
return chatbot, chat_state, img_list | |
# Command-line Argument Parsing | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Demo") | |
parser.add_argument("--cfg-path", help="path to configuration file.", default='configs/evaluation.yaml') | |
parser.add_argument( | |
"--options", | |
nargs="+", | |
help="override some settings in the used config, the key-value pair " | |
"in xxx=yyy format will be merged into config file (deprecate), " | |
"change to --cfg-options instead.", | |
) | |
args = parser.parse_args() | |
return args | |
# Demo Gradio Interface | |
title = """<h1 align="center">Demo of ProteinGPT</h1>""" | |
description = """<h3>Upload your protein sequence and structure and start chatting with your protein!</h3>""" | |
article = """<div style='display:flex; gap: 0.25rem; '><a href='https://huggingface.co/AI-BIO/ProteinGPT-Llama3'><img src='https://img.shields.io/badge/Project-Page-Green'></a><a href='https://github.com'><img src='https://img.shields.io/badge/Github-Code-blue'></a><a href='https://arxiv.org/abs/2408.11363'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div>""" | |
args = parse_args() # Parse arguments to get config and model info | |
chat = initialize_chat(args) # Initialize ProteinGPT model | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
gr.Markdown(article) | |
with gr.Row(): | |
with gr.Column(scale=0.5): | |
structure = gr.File(type="filepath", label="Upload Protein Structure", show_label=True) | |
sequence = gr.File(type="filepath", label="Upload Protein Sequence", show_label=True) | |
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary") | |
clear = gr.Button("Restart") | |
num_beams = gr.Slider(minimum=1, maximum=5, value=1, step=1, interactive=True, label="Beam search numbers") | |
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, interactive=True, label="Temperature") | |
with gr.Column(): | |
chat_state = gr.State() | |
img_list = gr.State() | |
chatbot = gr.Chatbot(label='ProteinGPT') | |
text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False) | |
upload_button.click(upload_protein, | |
[structure, sequence, text_input, chat_state], | |
[structure, sequence, text_input, upload_button, chat_state, img_list]) | |
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]) | |
clear.click(gradio_reset, [chat_state, img_list], [chatbot, structure, sequence, text_input, upload_button, chat_state, img_list], queue=False) | |
demo.launch(share=True) | |