Spaces:
Running
Running
import argparse | |
import os | |
import random | |
import sys | |
import time | |
import tqdm | |
sys.path.insert(0, "..") | |
import numpy as np | |
import torch | |
import torch.backends.cudnn as cudnn | |
from minigpt4.common.config import Config | |
from minigpt4.common.dist_utils import get_rank | |
from minigpt4.common.registry import registry | |
from minigpt4.conversation.conversation_esm import Chat, CONV_VISION | |
# imports modules for registration | |
from minigpt4.datasets.builders import * | |
from minigpt4.models import * | |
from minigpt4.processors import * | |
from minigpt4.runners import * | |
from minigpt4.tasks import * | |
import sys | |
import esm | |
import json | |
DATASET_SPEC = "/home/ubuntu/proteinchat/dataset.json" | |
ANN_PATH = "/home/ubuntu/proteinchat/data/qa_all.json" | |
PDB_PATH = "/home/ubuntu/pt" | |
SEQ_PATH = "/home/ubuntu/seq" | |
OUTPUT_SAVE_PATH = "/home/ubuntu/proteinchat/eval/results/outputs" | |
annotation = open(ANN_PATH, "r") | |
annotation = json.load(annotation) | |
dataset = open(DATASET_SPEC, "r") | |
dataset = json.load(dataset) | |
all_prots = dataset["test"] | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Demo") | |
parser.add_argument("--cfg-path", required=True, help="path to configuration file.") | |
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.") | |
parser.add_argument("--model", type=str, required=True, help="specify the model to load the model.") | |
parser.add_argument( | |
"--options", | |
nargs="+", | |
help="override some settings in the used config, the key-value pair " | |
"in xxx=yyy format will be merged into config file (deprecate), " | |
"change to --cfg-options instead.", | |
) | |
args = parser.parse_args() | |
return args | |
def setup_seeds(config): | |
seed = config.run_cfg.seed + get_rank() | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
cudnn.benchmark = False | |
cudnn.deterministic = True | |
print('Initializing Chat') | |
args = parse_args() | |
cfg = Config(args) | |
model_config = cfg.model_cfg | |
model_config.device_8bit = args.gpu_id | |
model_cls = registry.get_model_class(model_config.arch) | |
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id)) | |
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train | |
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) | |
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id)) | |
print('Initialization Finished') | |
raw_output = {} | |
score_output = {} | |
START_SAMPLES = 0 | |
# END_SAMPLES = 8806 | |
END_SAMPLES = 160 | |
all_prots = all_prots[START_SAMPLES : END_SAMPLES] | |
for prot in tqdm.tqdm(all_prots): | |
curr_prot_ann = annotation[prot] | |
pdb_path = os.path.join(PDB_PATH, f"{prot}.pt") | |
seq_path = os.path.join(SEQ_PATH, f"{prot}.pt") | |
seq_embedding = torch.load(seq_path, map_location=torch.device('cpu')) | |
sample_seq = seq_embedding.to('cuda:{}'.format(args.gpu_id)) | |
if (seq_embedding.shape[1] > 384): | |
continue | |
raw_output[prot] = [] | |
pdb_embedding = torch.load(pdb_path, map_location=torch.device('cpu')) | |
sample_pdb = pdb_embedding.to('cuda:{}'.format(args.gpu_id)) | |
for ann in curr_prot_ann: | |
d = {} | |
d["Q"] = ann["Q"] | |
chat_state = CONV_VISION.copy() | |
img_list = [] | |
llm_message = chat.upload_protein(sample_pdb, sample_seq, chat_state, img_list) | |
img_list = [mat.half() for mat in img_list] | |
chat.ask(ann["Q"], chat_state) | |
ans = chat.answer(conv=chat_state, | |
img_list=img_list, | |
num_beams=1, | |
temperature=0.7, | |
max_new_tokens=384, | |
max_length=2048)[0] | |
d["A"] = ans | |
raw_output[prot].append(d) | |
with open(os.path.join(OUTPUT_SAVE_PATH, f"{args.model}_eval_output.json"), 'w') as fp: | |
json.dump(raw_output, fp, indent=4) |