File size: 21,343 Bytes
f0d1cb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b08001d
f0d1cb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65b7b9e
f0d1cb5
88b3ec1
f0d1cb5
 
 
 
5df8a2c
f0d1cb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# -*- coding: utf-8 -*-

import sys
import io
import requests
import json
import base64
from PIL import Image
import numpy as np
import gradio as gr
import mmengine
from mmengine import Config, get

import argparse
import os
import cv2
import yaml
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
import datasets
import models
import numpy as np

from torchvision import transforms
from mmcv.runner import load_checkpoint
import visual_utils
from PIL import Image
from models.utils_prompt import get_prompt_inp, pre_prompt, pre_scatter_prompt, get_prompt_inp_scatter

device = torch.device("cpu")

def batched_predict(model, inp, coord, bsize):
    with torch.no_grad():
        model.gen_feat(inp)
        n = coord.shape[1]
        ql = 0
        preds = []
        while ql < n:
            qr = min(ql + bsize, n)
            pred = model.query_rgb(coord[:, ql: qr, :])
            preds.append(pred)
            ql = qr
        pred = torch.cat(preds, dim=1)
    return pred, preds


def tensor2PIL(tensor):
    toPIL = transforms.ToPILImage()
    return toPIL(tensor)


def Decoder1_optical_instance(image_input):
    with open('configs/fine_tuning_one_decoder.yaml', 'r') as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
    model = models.make(config['model']).cpu()
    sam_checkpoint = torch.load("./save/model_epoch_last.pth", map_location='cpu')
    model.load_state_dict(sam_checkpoint, strict=False)
    model.eval()

    # img = np.array(image_input).copy()
    label2color = visual_utils.Label2Color(cmap=visual_utils.color_map('Unify_double'))
    # image_input.save(f'./save/visual_fair1m/input_img.png', quality=5)
    img = transforms.Resize([1024, 1024])(image_input)
    transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229,0.224,0.225])])
    input_img = transform(img)
    input_img = input_img.unsqueeze(0)
    image_embedding = model.image_encoder(input_img) # torch.Size([1, 256, 64, 64])
    sparse_embeddings, dense_embeddings, scatter_embeddings  = model.prompt_encoder(
        points=None,
        boxes=None,
        masks=None,
    scatter=None)
    # 目标类预测decoder
    low_res_masks, iou_predictions = model.mask_decoder(
        image_embeddings=image_embedding,
        image_pe=model.prompt_encoder.get_dense_pe(),
        sparse_prompt_embeddings=sparse_embeddings,
        dense_prompt_embeddings=dense_embeddings,
        multimask_output=False
    )
    pred = model.postprocess_masks(low_res_masks, model.inp_size, model.inp_size)
    _, prediction = pred.max(dim=1)
    prediction_to_save = label2color(prediction.cpu().numpy().astype(np.uint8))[0]

    return prediction_to_save


def Decoder1_optical_terrain(image_input):
    with open('configs/fine_tuning_one_decoder.yaml', 'r') as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
    model = models.make(config['model']).cpu()
    sam_checkpoint = torch.load("./save/model_epoch_last.pth", map_location='cpu')
    model.load_state_dict(sam_checkpoint, strict=False)
    model.eval()

    denorm = visual_utils.Denormalize(mean=[0.485, 0.456, 0.406],std=[0.229,0.224,0.225])
    label2color = visual_utils.Label2Color(cmap=visual_utils.color_map('Unify_Vai'))
    # image_input.save(f'./save/visual_fair1m/input_img.png', quality=5)
    img = transforms.Resize([1024, 1024])(image_input)
    transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229,0.224,0.225])])
    input_img = transform(img)
    input_img = torch.unsqueeze(input_img, dim=0)
    # input_img = transforms.ToTensor()(img).unsqueeze(0)
    image_embedding = model.image_encoder(input_img) # torch.Size([1, 256, 64, 64])
    sparse_embeddings, dense_embeddings, scatter_embeddings = model.prompt_encoder(
        points=None,
        boxes=None,
        masks=None,
        scatter=None)
    low_res_masks_instanse, iou_predictions = model.mask_decoder(
        image_embeddings=image_embedding,
        # image_embeddings=image_embedding.unsqueeze(0),
        image_pe=model.prompt_encoder.get_dense_pe(),
        sparse_prompt_embeddings=sparse_embeddings,
        dense_prompt_embeddings=dense_embeddings,
        # multimask_output=multimask_output,
        multimask_output=False
    )
    # 地物类预测decoder
    low_res_masks, iou_predictions_2 = model.mask_decoder_diwu(
        image_embeddings=image_embedding,
        image_pe=model.prompt_encoder.get_dense_pe(),
        sparse_prompt_embeddings=sparse_embeddings,
        dense_prompt_embeddings=dense_embeddings,
        # multimask_output=False,
        multimask_output=True,
    )  # B*C+1*H*W

    pred_instance = model.postprocess_masks(low_res_masks_instanse, model.inp_size, model.inp_size)
    pred = model.postprocess_masks(low_res_masks, model.inp_size, model.inp_size)
    pred = torch.softmax(pred,dim=1)
    pred_instance = torch.softmax(pred_instance,dim=1)
    _, prediction = pred.max(dim=1)
    prediction[prediction==12]=0  #把第二个decoder里得背景变成0
    print(torch.unique(prediction))
    _, prediction_instance = pred_instance.max(dim=1)
    print(torch.unique(prediction_instance))
    prediction_sum = prediction + prediction_instance #没有冲突的位置就会正常猜测
    print(torch.unique(prediction_sum))
    prediction_tmp = prediction_sum.clone()
    prediction_tmp[prediction_tmp==1] = 255
    prediction_tmp[prediction_tmp==2] = 255
    prediction_tmp[prediction_tmp==5] = 255
    prediction_tmp[prediction_tmp==6] = 255
    prediction_tmp[prediction_tmp==14] = 255
    # prediction_tmp[prediction_tmp==0] = 255 #同时是背景
    # index = prediction_tmp != 255
    pred[:, 0][prediction_tmp == 255]=100 #把已经决定的像素位置的背景预测概率设置为最大
    pred_instance[:, 0][prediction_tmp == 255]=100#把已经决定的像素位置的背景预测概率设置为最大
    buchong = torch.zeros([1,2,1024,1024])
    pred = torch.cat((pred, buchong),dim=1)
    # print(torch.unique(torch.argmax(pred,dim=1)))
    # Decoder1_logits = torch.zeros([1,15,1024,1024]).cuda()
    Decoder2_logits = torch.zeros([1,15,1024,1024])
    Decoder2_logits[:,0,...] = pred[:,0,...]
    Decoder2_logits[:,5,...] = pred_instance[:,5,...]
    Decoder2_logits[:,14,...] = pred_instance[:,14,...]
    Decoder2_logits[:,1,...] = pred[:,1,...]
    Decoder2_logits[:,2,...] = pred[:,2,...]
    Decoder2_logits[:,6,...] = pred[:,6,...]
    # Decoder_logits = Decoder1_logits+Decoder2_logits
    pred_chongtu = torch.argmax(Decoder2_logits, dim=1)
    # pred_pred = torch.argmax(Decoder1_logits, dim=1)
    pred_predinstance = torch.argmax(Decoder2_logits, dim=1)
    print(torch.unique(pred_chongtu))
    pred_chongtu[prediction_tmp == 255] = 0
    prediction_sum[prediction_tmp!=255] = 0
    prediction_final = (pred_chongtu + prediction_sum).cpu().numpy()
    prediction_to_save = label2color(prediction_final)[0]
    
    return prediction_to_save 


def Multi_box_prompts(input_prompt):
    with open('configs/fine_tuning_one_decoder.yaml', 'r') as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
    model = models.make(config['model']).cpu()
    sam_checkpoint = torch.load("./save/model_epoch_last.pth", map_location='cpu')
    model.load_state_dict(sam_checkpoint, strict=False)
    model.eval()

    
    label2color = visual_utils.Label2Color(cmap=visual_utils.color_map('Unify_double'))
    # image_input.save(f'./save/visual_fair1m/input_img.png', quality=5)
    img = transforms.Resize([1024, 1024])(input_prompt["image"])
    input_img = transforms.ToTensor()(img).unsqueeze(0)
    image_embedding = model.image_encoder(input_img) # torch.Size([1, 256, 64, 64])
    sparse_embeddings, dense_embeddings, scatter_embeddings  = model.prompt_encoder(
        points=None,
        boxes=None,
        masks=None,
    scatter=None)
    # 目标类预测decoder
    low_res_masks, iou_predictions = model.mask_decoder(
        image_embeddings=image_embedding,
        image_pe=model.prompt_encoder.get_dense_pe(),
        sparse_prompt_embeddings=sparse_embeddings,
        dense_prompt_embeddings=dense_embeddings,
        multimask_output=False
    )
    pred = model.postprocess_masks(low_res_masks, model.inp_size, model.inp_size)
    _, prediction = pred.max(dim=1)
    prediction_to_save = label2color(prediction.cpu().numpy().astype(np.uint8))[0]

    def find_instance(image_map):
        BACKGROUND = 0
        steps = [[1, 0], [0, 1], [-1, 0], [0, -1], [1, 1], [1, -1], [-1, 1], [-1, -1]]
        instances = []

        def bfs(x, y, category_id):
            nonlocal image_map, steps
            instance = {(x, y)}
            q = [(x, y)]
            image_map[x, y] = BACKGROUND
            while len(q) > 0:
                x, y = q.pop(0)
                # print(x, y, image_map[x][y])
                for step in steps:
                    xx = step[0] + x
                    yy = step[1] + y
                    if 0 <= xx < len(image_map) and 0 <= yy < len(image_map[0]) \
                            and image_map[xx][yy] == category_id:  # and (xx, yy) not in q:
                        q.append((xx, yy))
                        instance.add((xx, yy))
                        image_map[xx, yy] = BACKGROUND
            return instance
        image_map = image_map[:]
        for i in range(len(image_map)):
            for j in range(len(image_map[i])):
                category_id = image_map[i][j]
                if category_id == BACKGROUND:
                    continue
                instances.append(bfs(i, j, category_id))
        return instances

    prompts = find_instance(np.uint8(np.array(input_prompt["mask"]).sum(-1) != 0))
    img_mask = np.array(img).copy()
    
    def get_box(prompt):
        xs = []
        ys = []
        for x, y in prompt:
            xs.append(x)
            ys.append(y)
        return [[min(xs), min(ys)], [max(xs), max(ys)]]

    def in_box(point, box):
        left_up, right_down = box
        x, y = point
        return x >= left_up[0] and x <= right_down[0] and y >= left_up[1] and y <= right_down[1]
        
    def draw_box(box_outer, img, radius=4):
        radius -= 1
        left_up_outer, right_down_outer = box_outer
        box_inner = [list(np.array(left_up_outer) + radius),
                                           list(np.array(right_down_outer) - radius)]
        for x in range(len(img)):
            for y in range(len(img[x])):
                if in_box([x, y], box_outer):
                    img_mask[x, y] = (1, 1, 1)
                if in_box([x, y], box_outer) and (not in_box([x, y], box_inner)):
                    img[x, y] = (255, 0, 0)
        return img
        
    for prompt in prompts:
        box = get_box(prompt)
        output = draw_box(box, prediction_to_save) * (img_mask==1)
    
    return output



def Decoder2_SAR(SAR_image, SAR_prompt):
    with open('configs/multi_mo_multi_task_sar_prompt.yaml', 'r') as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
    model = models.make(config['model']).cpu()
    sam_checkpoint = torch.load("./save/SAR/model_epoch_last.pth", map_location='cpu')
    model.load_state_dict(sam_checkpoint, strict=True)
    model.eval()

    denorm = visual_utils.Denormalize(mean=[0.485, 0.456, 0.406],std=[0.229,0.224,0.225])
    label2color = visual_utils.Label2Color(cmap=visual_utils.color_map('Unify_YIJISAR'))

    img = transforms.Resize([1024, 1024])(SAR_image)
    transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229,0.224,0.225])])
    input_img = transform(img)
    input_img = torch.unsqueeze(input_img, dim=0)
    # input_img = transforms.ToTensor()(img).unsqueeze(0)
    # input_img = transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229,0.224,0.225])
    filp_flag = torch.Tensor([False])
    image_embedding = model.image_encoder(input_img)
    
    # scattter_prompt = cv2.imread(scatter_file_, cv2.IMREAD_UNCHANGED)
    # scattter_prompt = get_prompt_inp_scatter(name[0].replace('gt', 'JIHUAFENJIE'))
    SAR_prompt = cv2.imread(SAR_prompt, cv2.IMREAD_UNCHANGED)
    scatter_torch = pre_scatter_prompt(SAR_prompt, filp_flag, device=input_img.device)
    scatter_torch = scatter_torch.unsqueeze(0)
    scatter_torch = torch.nn.functional.interpolate(scatter_torch, size=(256, 256))
    sparse_embeddings, dense_embeddings, scatter_embeddings = model.prompt_encoder(
        points=None,
        boxes=None,
        masks=None,
        scatter=scatter_torch)
    # 地物类预测decoder
    low_res_masks, iou_predictions_2 = model.mask_decoder_diwu(
        image_embeddings=image_embedding,
        image_pe=model.prompt_encoder.get_dense_pe(),
        sparse_prompt_embeddings=sparse_embeddings,
        dense_prompt_embeddings=dense_embeddings,
        # multimask_output=False,
        multimask_output=True,
    )  # B*C+1*H*W
    pred = model.postprocess_masks(low_res_masks, model.inp_size, model.inp_size)
    _, prediction = pred.max(dim=1)
    prediction = prediction.cpu().numpy()
    prediction_to_save = label2color(prediction)[0]
    
    return prediction_to_save


examples1_instance = [
            ['./images/optical/isaid/_P0007_1065_319_image.png'], 
            ['./images/optical/isaid/_P0466_1068_420_image.png'], 
            ['./images/optical/isaid/_P0897_146_34_image.png'],
            ['./images/optical/isaid/_P1397_844_904_image.png'], 
            ['./images/optical/isaid/_P2645_883_965_image.png'],
            ['./images/optical/isaid/_P1398_1290_630_image.png']
           ]

examples1_terrain = [
            ['./images/optical/vaihingen/top_mosaic_09cm_area2_105_image.png'],
            ['./images/optical/vaihingen/top_mosaic_09cm_area4_227_image.png'],
            ['./images/optical/vaihingen/top_mosaic_09cm_area20_142_image.png'],
            ['./images/optical/vaihingen/top_mosaic_09cm_area24_128_image.png'],
            ['./images/optical/vaihingen/top_mosaic_09cm_area27_34_image.png']
           ]


examples1_multi_box = [
            ['./images/optical/isaid/_P0007_1065_319_image.png'], 
            ['./images/optical/isaid/_P0466_1068_420_image.png'], 
            ['./images/optical/isaid/_P0897_146_34_image.png'],
            ['./images/optical/isaid/_P1397_844_904_image.png'], 
            ['./images/optical/isaid/_P2645_883_965_image.png'],
            ['./images/optical/isaid/_P1398_1290_630_image.png']
           ]


examples2 = [
            ['./images/sar/YIJISARGF3_MYN_QPSI_001269_E113.2_N23.0_20161105_L1A_L10002009158_ampl_4_image.png', './images/sar/YIJISARGF3_MYN_QPSI_001269_E113.2_N23.0_20161105_L1A_L10002009158_ampl_4.png'],
            ['./images/sar/YIJISARGF3_MYN_QPSI_001269_E113.2_N23.0_20161105_L1A_L10002009158_ampl_15_image.png', './images/sar/YIJISARGF3_MYN_QPSI_001269_E113.2_N23.0_20161105_L1A_L10002009158_ampl_15.png'],
            ['./images/sar/YIJISARGF3_MYN_QPSI_001269_E113.2_N23.0_20161105_L1A_L10002009158_ampl_24_image.png', './images/sar/YIJISARGF3_MYN_QPSI_001269_E113.2_N23.0_20161105_L1A_L10002009158_ampl_24.png'],
            ['./images/sar/YIJISARGF3_MYN_QPSI_001269_E113.2_N23.0_20161105_L1A_L10002009158_ampl_41_image.png', './images/sar/YIJISARGF3_MYN_QPSI_001269_E113.2_N23.0_20161105_L1A_L10002009158_ampl_41.png'],
            ['./images/sar/YIJISARGF3_MYN_QPSI_999996_E121.2_N30.3_20160815_L1A_L10002015572_ampl_150_image.png', './images/sar/YIJISARGF3_MYN_QPSI_999996_E121.2_N30.3_20160815_L1A_L10002015572_ampl_150.png']
           ]



# RingMo-SAM designs two new promptable forms based on the characteristics of multimodal remote sensing images: 
# multi-boxes prompt and SAR polarization scatter prompt.


title = "RingMo-SAM:A Foundation Model for Segment Anything in Multimodal Remote Sensing Images<br> \
<div align='center'> \
<h2><a href='https://ieeexplore.ieee.org/document/10315957' target='_blank' rel='noopener'>[paper]</a> \
<br> \
<image src='file/RingMo-SAM.gif' width='720px' /> \
<h2>RingMo-SAM can not only segment anything in optical and SAR remote sensing data, but also identify object categories.<h2> \
</div> \
"

# <a href='https://github.com/AICyberTeam' target='_blank' rel='noopener'>[code]</a></h2> \
# with gr.Blocks() as demo:
#     image_input = gr.Image(type='pil', label='Input Img')
#     image_output = gr.Image(label='Segment Result', type='numpy')
    
        
Decoder_optical_instance_io = gr.Interface(fn=Decoder1_optical_instance,
                  inputs=[gr.Image(type='pil', label='optical_instance_img(光学图像)')],
                  outputs=[gr.Image(label='segment_result', type='numpy')],
                  # title=title,
                  description="<p> \
                    Instance_Decoder:<br>\
                    Instance-type objects (such as vehicle, aircraft, ship, etc.) have a smaller proportion. <br>\
                    Our decoder can decouple the SAM's mask decoder into instance category decoder and terrain category decoder to ensure that the model fits adequately to both types of data. <br>\
                    Choose an example below, or, upload optical instance images to be tested. <br>\
                    Examples below were never trained and are randomly selected for testing in the wild. <br>\
                  </p>",
                  allow_flagging='auto',
                  examples=examples1_instance,
                  cache_examples=False,
                  )


Decoder_optical_terrain_io = gr.Interface(fn=Decoder1_optical_terrain,
                  inputs=[gr.Image(type='pil', label='optical_terrain_img(光学图像)')],
                  # inputs=[gr.Image(type='pil', label='optical_img(光学图像)'), gr.Image(type='pil', label='SAR_img(SAR图像)'), gr.Image(type='pil', label='SAR_prompt(偏振散射提示)')],
                  outputs=[gr.Image(label='segment_result', type='numpy')],
                  # title=title,
                  description="<p> \
                    Terrain_Decoder:<br>\
                    Terrain-type objects (such as vegetation, land, river, etc.) have a larger proportion. <br>\
                    Our decoder can decouple the SAM's mask decoder into instance category decoder and terrain category decoder to ensure that the model fits adequately to both types of data. <br>\
                    Choose an example below, or, upload optical terrain images to be tested. <br>\
                    Examples below were never trained and are randomly selected for testing in the wild. <br>\
                  </p>",
                  allow_flagging='auto',
                  examples=examples1_terrain,
                  cache_examples=False,
                  )



Decoder_multi_box_prompts_io = gr.Interface(fn=Multi_box_prompts,
              inputs=[gr.ImageMask(brush_radius=4, type='pil', label='input_img(图像)')],
              outputs=[gr.Image(label='segment_result', type='numpy')],
              # title=title,
              description="<p> \
                Multi-box Prompts:<br>\
                Multiple boxes are sequentially encoded as concated sparse high-dimensional feature embedding, \
                the corresponding multiple high-dimensional features are concated together into a high-dimensional feature vector as part of the sparse embedding. <br>\
                Choose an example below, or, upload images to be tested, and then draw multi-boxes.  <br>\
                Examples below were never trained and are randomly selected for testing in the wild. <br>\
              </p>",
              allow_flagging='auto',
              examples=examples1_multi_box,
              cache_examples=False,
              )



Decoder_SAR_io = gr.Interface(fn=Decoder2_SAR,
                  inputs=[gr.Image(type='pil', label='SAR_img(SAR图像)'), gr.Image(type='filepath', label='SAR_prompt(偏振散射提示)')],
                  outputs=[gr.Image(label='segment_result', type='numpy')],
                  description="<p> \
                    SAR Polarization Scatter Prompts:<br>\
                    Different terrain categories usually exhibit different scattering properties. \
                    Therefore, we code network for coded mapping of these SAR polarization scatter prompts to the corresponding SAR images, \
                    which improves the segmentation results of SAR images. <br>\
                    Choose an example below, or, upload SAR images and the corresponding polarization scatter prompts to be tested. <br>\
                    Examples below were never trained and are randomly selected for testing in the wild. <br>\
                  </p>",           
                  allow_flagging='auto',
                  examples=examples2,
                  cache_examples=False,
                  )


# Decoder1_io.launch(server_name="0.0.0.0", server_port=34311)
# Decoder1_io.launch(enable_queue=False)
# demo = gr.TabbedInterface([Decoder1_io, Decoder2_io], ['Instance_Decoder', 'Terrain_Decoder'], title=title)
demo = gr.TabbedInterface([Decoder_optical_instance_io, Decoder_optical_terrain_io, Decoder_multi_box_prompts_io, Decoder_SAR_io], ['optical_instance_img(光学图像)', 'optical_terrain_img(光学图像)', 'multi_box_prompts(多框提示)', 'SAR_img(偏振散射提示)'], title=title).launch()
# -