Spaces:
Running
Running
File size: 11,487 Bytes
0223881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import os
import time
import shutil
import torch
import numpy as np
from torch.optim import SGD, Adam, AdamW
from tensorboardX import SummaryWriter
import sod_metric
class Averager():
def __init__(self):
self.n = 0.0
self.v = 0.0
def add(self, v, n=1.0):
self.v = (self.v * self.n + v * n) / (self.n + n)
self.n += n
def item(self):
return self.v
class Timer():
def __init__(self):
self.v = time.time()
def s(self):
self.v = time.time()
def t(self):
return time.time() - self.v
def time_text(t):
if t >= 3600:
return '{:.1f}h'.format(t / 3600)
elif t >= 60:
return '{:.1f}m'.format(t / 60)
else:
return '{:.1f}s'.format(t)
_log_path = None
def set_log_path(path):
global _log_path
_log_path = path
def log(obj, filename='log.txt'):
print(obj)
if _log_path is not None:
with open(os.path.join(_log_path, filename), 'a') as f:
print(obj, file=f)
def ensure_path(path, remove=True):
basename = os.path.basename(path.rstrip('/'))
if os.path.exists(path):
if remove and (basename.startswith('_')
or input('{} exists, remove? (y/[n]): '.format(path)) == 'y'):
shutil.rmtree(path)
os.makedirs(path, exist_ok=True)
else:
os.makedirs(path, exist_ok=True)
def set_save_path(save_path, remove=True):
ensure_path(save_path, remove=remove)
set_log_path(save_path)
writer = SummaryWriter(os.path.join(save_path, 'tensorboard'))
return log, writer
def compute_num_params(model, text=False):
tot = int(sum([np.prod(p.shape) for p in model.parameters()]))
if text:
if tot >= 1e6:
return '{:.1f}M'.format(tot / 1e6)
else:
return '{:.1f}K'.format(tot / 1e3)
else:
return tot
def make_optimizer(param_list, optimizer_spec, load_sd=False):
Optimizer = {
'sgd': SGD,
'adam': Adam,
'adamw': AdamW
}[optimizer_spec['name']]
optimizer = Optimizer(param_list, **optimizer_spec['args'])
if load_sd:
optimizer.load_state_dict(optimizer_spec['sd'])
return optimizer
def make_coord(shape, ranges=None, flatten=True):
""" Make coordinates at grid centers.
"""
coord_seqs = []
for i, n in enumerate(shape):
if ranges is None:
v0, v1 = -1, 1
else:
v0, v1 = ranges[i]
r = (v1 - v0) / (2 * n)
seq = v0 + r + (2 * r) * torch.arange(n).float()
coord_seqs.append(seq)
ret = torch.stack(torch.meshgrid(*coord_seqs), dim=-1)
# if flatten:
# ret = ret.view(-1, ret.shape[-1])
return ret
def calc_cod(y_pred, y_true):
batchsize = y_true.shape[0]
metric_FM = sod_metric.Fmeasure()
metric_WFM = sod_metric.WeightedFmeasure()
metric_SM = sod_metric.Smeasure()
metric_EM = sod_metric.Emeasure()
metric_MAE = sod_metric.MAE()
with torch.no_grad():
assert y_pred.shape == y_true.shape
for i in range(batchsize):
true, pred = \
y_true[i, 0].cpu().data.numpy() * 255, y_pred[i, 0].cpu().data.numpy() * 255
metric_FM.step(pred=pred, gt=true)
metric_WFM.step(pred=pred, gt=true)
metric_SM.step(pred=pred, gt=true)
metric_EM.step(pred=pred, gt=true)
metric_MAE.step(pred=pred, gt=true)
fm = metric_FM.get_results()["fm"]
wfm = metric_WFM.get_results()["wfm"]
sm = metric_SM.get_results()["sm"]
em = metric_EM.get_results()["em"]["curve"].mean()
mae = metric_MAE.get_results()["mae"]
return sm, em, wfm, mae
from sklearn.metrics import precision_recall_curve
def calc_f1(y_pred,y_true):
batchsize = y_true.shape[0]
with torch.no_grad():
print(y_pred.shape)
print(y_true.shape)
assert y_pred.shape == y_true.shape
f1, auc = 0, 0
y_true = y_true.cpu().numpy()
y_pred = y_pred.cpu().numpy()
for i in range(batchsize):
true = y_true[i].flatten()
true = true.astype(np.int)
pred = y_pred[i].flatten()
precision, recall, thresholds = precision_recall_curve(true, pred)
# auc
auc += roc_auc_score(true, pred)
# auc += roc_auc_score(np.array(true>0).astype(np.int), pred)
f1 += max([(2 * p * r) / (p + r+1e-10) for p, r in zip(precision, recall)])
return f1/batchsize, auc/batchsize, np.array(0), np.array(0)
def calc_fmeasure(y_pred,y_true):
batchsize = y_true.shape[0]
mae, preds, gts = [], [], []
with torch.no_grad():
for i in range(batchsize):
gt_float, pred_float = \
y_true[i, 0].cpu().data.numpy(), y_pred[i, 0].cpu().data.numpy()
# # MAE
mae.append(np.sum(cv2.absdiff(gt_float.astype(float), pred_float.astype(float))) / (
pred_float.shape[1] * pred_float.shape[0]))
# mae.append(np.mean(np.abs(pred_float - gt_float)))
#
pred = np.uint8(pred_float * 255)
gt = np.uint8(gt_float * 255)
pred_float_ = np.where(pred > min(1.5 * np.mean(pred), 255), np.ones_like(pred_float),
np.zeros_like(pred_float))
gt_float_ = np.where(gt > min(1.5 * np.mean(gt), 255), np.ones_like(pred_float),
np.zeros_like(pred_float))
preds.extend(pred_float_.ravel())
gts.extend(gt_float_.ravel())
RECALL = recall_score(gts, preds)
PERC = precision_score(gts, preds)
fmeasure = (1 + 0.3) * PERC * RECALL / (0.3 * PERC + RECALL)
MAE = np.mean(mae)
return fmeasure, MAE, np.array(0), np.array(0)
from sklearn.metrics import roc_auc_score,recall_score,precision_score
import cv2
def calc_ber(y_pred, y_true):
batchsize = y_true.shape[0]
y_pred, y_true = y_pred.permute(0, 2, 3, 1).squeeze(-1), y_true.permute(0, 2, 3, 1).squeeze(-1)
with torch.no_grad():
assert y_pred.shape == y_true.shape
pos_err, neg_err, ber = 0, 0, 0
y_true = y_true.cpu().numpy()
y_pred = y_pred.cpu().numpy()
for i in range(batchsize):
true = y_true[i].flatten()
pred = y_pred[i].flatten()
TP, TN, FP, FN, BER, ACC = get_binary_classification_metrics(pred * 255,
true * 255, 125)
pos_err += (1 - TP / (TP + FN)) * 100
neg_err += (1 - TN / (TN + FP)) * 100
return pos_err / batchsize, neg_err / batchsize, (pos_err + neg_err) / 2 / batchsize, np.array(0)
def get_binary_classification_metrics(pred, gt, threshold=None):
if threshold is not None:
gt = (gt > threshold)
pred = (pred > threshold)
TP = np.logical_and(gt, pred).sum()
TN = np.logical_and(np.logical_not(gt), np.logical_not(pred)).sum()
FN = np.logical_and(gt, np.logical_not(pred)).sum()
FP = np.logical_and(np.logical_not(gt), pred).sum()
BER = cal_ber(TN, TP, FN, FP)
ACC = cal_acc(TN, TP, FN, FP)
return TP, TN, FP, FN, BER, ACC
def cal_ber(tn, tp, fn, fp):
return 0.5*(fp/(tn+fp) + fn/(fn+tp))
def cal_acc(tn, tp, fn, fp):
return (tp + tn) / (tp + tn + fp + fn)
def _sigmoid(x):
return 1 / (1 + np.exp(-x))
def _eval_pr(y_pred, y, num):
prec, recall = torch.zeros(num), torch.zeros(num)
thlist = torch.linspace(0, 1 - 1e-10, num)
for i in range(num):
y_temp = (y_pred >= thlist[i]).float()
tp = (y_temp * y).sum()
prec[i], recall[i] = tp / (y_temp.sum() + 1e-20), tp / (y.sum() +
1e-20)
return prec, recall
def _S_object(pred, gt):
fg = torch.where(gt == 0, torch.zeros_like(pred), pred)
bg = torch.where(gt == 1, torch.zeros_like(pred), 1 - pred)
o_fg = _object(fg, gt)
o_bg = _object(bg, 1 - gt)
u = gt.mean()
Q = u * o_fg + (1 - u) * o_bg
return Q
def _object(pred, gt):
temp = pred[gt == 1]
x = temp.mean()
sigma_x = temp.std()
score = 2.0 * x / (x * x + 1.0 + sigma_x + 1e-20)
return score
def _S_region(pred, gt):
X, Y = _centroid(gt)
gt1, gt2, gt3, gt4, w1, w2, w3, w4 = _divideGT(gt, X, Y)
p1, p2, p3, p4 = _dividePrediction(pred, X, Y)
Q1 = _ssim(p1, gt1)
Q2 = _ssim(p2, gt2)
Q3 = _ssim(p3, gt3)
Q4 = _ssim(p4, gt4)
Q = w1 * Q1 + w2 * Q2 + w3 * Q3 + w4 * Q4
return Q
def _centroid(gt):
rows, cols = gt.size()[-2:]
gt = gt.view(rows, cols)
if gt.sum() == 0:
X = torch.eye(1) * round(cols / 2)
Y = torch.eye(1) * round(rows / 2)
else:
total = gt.sum()
i = torch.from_numpy(np.arange(0, cols)).float().cuda()
j = torch.from_numpy(np.arange(0, rows)).float().cuda()
X = torch.round((gt.sum(dim=0) * i).sum() / total + 1e-20)
Y = torch.round((gt.sum(dim=1) * j).sum() / total + 1e-20)
return X.long(), Y.long()
def _divideGT(gt, X, Y):
h, w = gt.size()[-2:]
area = h * w
gt = gt.view(h, w)
LT = gt[:Y, :X]
RT = gt[:Y, X:w]
LB = gt[Y:h, :X]
RB = gt[Y:h, X:w]
X = X.float()
Y = Y.float()
w1 = X * Y / area
w2 = (w - X) * Y / area
w3 = X * (h - Y) / area
w4 = 1 - w1 - w2 - w3
return LT, RT, LB, RB, w1, w2, w3, w4
def _dividePrediction(pred, X, Y):
h, w = pred.size()[-2:]
pred = pred.view(h, w)
LT = pred[:Y, :X]
RT = pred[:Y, X:w]
LB = pred[Y:h, :X]
RB = pred[Y:h, X:w]
return LT, RT, LB, RB
def _ssim(pred, gt):
gt = gt.float()
h, w = pred.size()[-2:]
N = h * w
x = pred.mean()
y = gt.mean()
sigma_x2 = ((pred - x) * (pred - x)).sum() / (N - 1 + 1e-20)
sigma_y2 = ((gt - y) * (gt - y)).sum() / (N - 1 + 1e-20)
sigma_xy = ((pred - x) * (gt - y)).sum() / (N - 1 + 1e-20)
aplha = 4 * x * y * sigma_xy
beta = (x * x + y * y) * (sigma_x2 + sigma_y2)
if aplha != 0:
Q = aplha / (beta + 1e-20)
elif aplha == 0 and beta == 0:
Q = 1.0
else:
Q = 0
return Q
def _eval_e(y_pred, y, num):
score = torch.zeros(num)
thlist = torch.linspace(0, 1 - 1e-10, num)
for i in range(num):
y_pred_th = (y_pred >= thlist[i]).float()
fm = y_pred_th - y_pred_th.mean()
gt = y - y.mean()
align_matrix = 2 * gt * fm / (gt * gt + fm * fm + 1e-20)
enhanced = ((align_matrix + 1) * (align_matrix + 1)) / 4
score[i] = torch.sum(enhanced) / (y.numel() - 1 + 1e-20)
return score
def calc_Semantic_Segmentation(y_pred,y_true):
batchsize = y_true.shape[0]
with torch.no_grad():
assert y_pred.shape == y_true.shape
f1, auc = 0, 0
y_true = y_true.cpu().numpy()
y_pred = y_pred.cpu().numpy()
for i in range(batchsize):
true = y_true[i].flatten()
true = true.astype(np.int)
pred = y_pred[i].flatten()
precision, recall, thresholds = precision_recall_curve(true, pred)
# auc
auc += roc_auc_score(true, pred)
# auc += roc_auc_score(np.array(true>0).astype(np.int), pred)
f1 += max([(2 * p * r) / (p + r+1e-10) for p, r in zip(precision, recall)])
return f1/batchsize, auc/batchsize, np.array(0), np.array(0) |