import os import time import shutil import torch import numpy as np from torch.optim import SGD, Adam, AdamW from tensorboardX import SummaryWriter import sod_metric class Averager(): def __init__(self): self.n = 0.0 self.v = 0.0 def add(self, v, n=1.0): self.v = (self.v * self.n + v * n) / (self.n + n) self.n += n def item(self): return self.v class Timer(): def __init__(self): self.v = time.time() def s(self): self.v = time.time() def t(self): return time.time() - self.v def time_text(t): if t >= 3600: return '{:.1f}h'.format(t / 3600) elif t >= 60: return '{:.1f}m'.format(t / 60) else: return '{:.1f}s'.format(t) _log_path = None def set_log_path(path): global _log_path _log_path = path def log(obj, filename='log.txt'): print(obj) if _log_path is not None: with open(os.path.join(_log_path, filename), 'a') as f: print(obj, file=f) def ensure_path(path, remove=True): basename = os.path.basename(path.rstrip('/')) if os.path.exists(path): if remove and (basename.startswith('_') or input('{} exists, remove? (y/[n]): '.format(path)) == 'y'): shutil.rmtree(path) os.makedirs(path, exist_ok=True) else: os.makedirs(path, exist_ok=True) def set_save_path(save_path, remove=True): ensure_path(save_path, remove=remove) set_log_path(save_path) writer = SummaryWriter(os.path.join(save_path, 'tensorboard')) return log, writer def compute_num_params(model, text=False): tot = int(sum([np.prod(p.shape) for p in model.parameters()])) if text: if tot >= 1e6: return '{:.1f}M'.format(tot / 1e6) else: return '{:.1f}K'.format(tot / 1e3) else: return tot def make_optimizer(param_list, optimizer_spec, load_sd=False): Optimizer = { 'sgd': SGD, 'adam': Adam, 'adamw': AdamW }[optimizer_spec['name']] optimizer = Optimizer(param_list, **optimizer_spec['args']) if load_sd: optimizer.load_state_dict(optimizer_spec['sd']) return optimizer def make_coord(shape, ranges=None, flatten=True): """ Make coordinates at grid centers. """ coord_seqs = [] for i, n in enumerate(shape): if ranges is None: v0, v1 = -1, 1 else: v0, v1 = ranges[i] r = (v1 - v0) / (2 * n) seq = v0 + r + (2 * r) * torch.arange(n).float() coord_seqs.append(seq) ret = torch.stack(torch.meshgrid(*coord_seqs), dim=-1) # if flatten: # ret = ret.view(-1, ret.shape[-1]) return ret def calc_cod(y_pred, y_true): batchsize = y_true.shape[0] metric_FM = sod_metric.Fmeasure() metric_WFM = sod_metric.WeightedFmeasure() metric_SM = sod_metric.Smeasure() metric_EM = sod_metric.Emeasure() metric_MAE = sod_metric.MAE() with torch.no_grad(): assert y_pred.shape == y_true.shape for i in range(batchsize): true, pred = \ y_true[i, 0].cpu().data.numpy() * 255, y_pred[i, 0].cpu().data.numpy() * 255 metric_FM.step(pred=pred, gt=true) metric_WFM.step(pred=pred, gt=true) metric_SM.step(pred=pred, gt=true) metric_EM.step(pred=pred, gt=true) metric_MAE.step(pred=pred, gt=true) fm = metric_FM.get_results()["fm"] wfm = metric_WFM.get_results()["wfm"] sm = metric_SM.get_results()["sm"] em = metric_EM.get_results()["em"]["curve"].mean() mae = metric_MAE.get_results()["mae"] return sm, em, wfm, mae from sklearn.metrics import precision_recall_curve def calc_f1(y_pred,y_true): batchsize = y_true.shape[0] with torch.no_grad(): print(y_pred.shape) print(y_true.shape) assert y_pred.shape == y_true.shape f1, auc = 0, 0 y_true = y_true.cpu().numpy() y_pred = y_pred.cpu().numpy() for i in range(batchsize): true = y_true[i].flatten() true = true.astype(np.int) pred = y_pred[i].flatten() precision, recall, thresholds = precision_recall_curve(true, pred) # auc auc += roc_auc_score(true, pred) # auc += roc_auc_score(np.array(true>0).astype(np.int), pred) f1 += max([(2 * p * r) / (p + r+1e-10) for p, r in zip(precision, recall)]) return f1/batchsize, auc/batchsize, np.array(0), np.array(0) def calc_fmeasure(y_pred,y_true): batchsize = y_true.shape[0] mae, preds, gts = [], [], [] with torch.no_grad(): for i in range(batchsize): gt_float, pred_float = \ y_true[i, 0].cpu().data.numpy(), y_pred[i, 0].cpu().data.numpy() # # MAE mae.append(np.sum(cv2.absdiff(gt_float.astype(float), pred_float.astype(float))) / ( pred_float.shape[1] * pred_float.shape[0])) # mae.append(np.mean(np.abs(pred_float - gt_float))) # pred = np.uint8(pred_float * 255) gt = np.uint8(gt_float * 255) pred_float_ = np.where(pred > min(1.5 * np.mean(pred), 255), np.ones_like(pred_float), np.zeros_like(pred_float)) gt_float_ = np.where(gt > min(1.5 * np.mean(gt), 255), np.ones_like(pred_float), np.zeros_like(pred_float)) preds.extend(pred_float_.ravel()) gts.extend(gt_float_.ravel()) RECALL = recall_score(gts, preds) PERC = precision_score(gts, preds) fmeasure = (1 + 0.3) * PERC * RECALL / (0.3 * PERC + RECALL) MAE = np.mean(mae) return fmeasure, MAE, np.array(0), np.array(0) from sklearn.metrics import roc_auc_score,recall_score,precision_score import cv2 def calc_ber(y_pred, y_true): batchsize = y_true.shape[0] y_pred, y_true = y_pred.permute(0, 2, 3, 1).squeeze(-1), y_true.permute(0, 2, 3, 1).squeeze(-1) with torch.no_grad(): assert y_pred.shape == y_true.shape pos_err, neg_err, ber = 0, 0, 0 y_true = y_true.cpu().numpy() y_pred = y_pred.cpu().numpy() for i in range(batchsize): true = y_true[i].flatten() pred = y_pred[i].flatten() TP, TN, FP, FN, BER, ACC = get_binary_classification_metrics(pred * 255, true * 255, 125) pos_err += (1 - TP / (TP + FN)) * 100 neg_err += (1 - TN / (TN + FP)) * 100 return pos_err / batchsize, neg_err / batchsize, (pos_err + neg_err) / 2 / batchsize, np.array(0) def get_binary_classification_metrics(pred, gt, threshold=None): if threshold is not None: gt = (gt > threshold) pred = (pred > threshold) TP = np.logical_and(gt, pred).sum() TN = np.logical_and(np.logical_not(gt), np.logical_not(pred)).sum() FN = np.logical_and(gt, np.logical_not(pred)).sum() FP = np.logical_and(np.logical_not(gt), pred).sum() BER = cal_ber(TN, TP, FN, FP) ACC = cal_acc(TN, TP, FN, FP) return TP, TN, FP, FN, BER, ACC def cal_ber(tn, tp, fn, fp): return 0.5*(fp/(tn+fp) + fn/(fn+tp)) def cal_acc(tn, tp, fn, fp): return (tp + tn) / (tp + tn + fp + fn) def _sigmoid(x): return 1 / (1 + np.exp(-x)) def _eval_pr(y_pred, y, num): prec, recall = torch.zeros(num), torch.zeros(num) thlist = torch.linspace(0, 1 - 1e-10, num) for i in range(num): y_temp = (y_pred >= thlist[i]).float() tp = (y_temp * y).sum() prec[i], recall[i] = tp / (y_temp.sum() + 1e-20), tp / (y.sum() + 1e-20) return prec, recall def _S_object(pred, gt): fg = torch.where(gt == 0, torch.zeros_like(pred), pred) bg = torch.where(gt == 1, torch.zeros_like(pred), 1 - pred) o_fg = _object(fg, gt) o_bg = _object(bg, 1 - gt) u = gt.mean() Q = u * o_fg + (1 - u) * o_bg return Q def _object(pred, gt): temp = pred[gt == 1] x = temp.mean() sigma_x = temp.std() score = 2.0 * x / (x * x + 1.0 + sigma_x + 1e-20) return score def _S_region(pred, gt): X, Y = _centroid(gt) gt1, gt2, gt3, gt4, w1, w2, w3, w4 = _divideGT(gt, X, Y) p1, p2, p3, p4 = _dividePrediction(pred, X, Y) Q1 = _ssim(p1, gt1) Q2 = _ssim(p2, gt2) Q3 = _ssim(p3, gt3) Q4 = _ssim(p4, gt4) Q = w1 * Q1 + w2 * Q2 + w3 * Q3 + w4 * Q4 return Q def _centroid(gt): rows, cols = gt.size()[-2:] gt = gt.view(rows, cols) if gt.sum() == 0: X = torch.eye(1) * round(cols / 2) Y = torch.eye(1) * round(rows / 2) else: total = gt.sum() i = torch.from_numpy(np.arange(0, cols)).float().cuda() j = torch.from_numpy(np.arange(0, rows)).float().cuda() X = torch.round((gt.sum(dim=0) * i).sum() / total + 1e-20) Y = torch.round((gt.sum(dim=1) * j).sum() / total + 1e-20) return X.long(), Y.long() def _divideGT(gt, X, Y): h, w = gt.size()[-2:] area = h * w gt = gt.view(h, w) LT = gt[:Y, :X] RT = gt[:Y, X:w] LB = gt[Y:h, :X] RB = gt[Y:h, X:w] X = X.float() Y = Y.float() w1 = X * Y / area w2 = (w - X) * Y / area w3 = X * (h - Y) / area w4 = 1 - w1 - w2 - w3 return LT, RT, LB, RB, w1, w2, w3, w4 def _dividePrediction(pred, X, Y): h, w = pred.size()[-2:] pred = pred.view(h, w) LT = pred[:Y, :X] RT = pred[:Y, X:w] LB = pred[Y:h, :X] RB = pred[Y:h, X:w] return LT, RT, LB, RB def _ssim(pred, gt): gt = gt.float() h, w = pred.size()[-2:] N = h * w x = pred.mean() y = gt.mean() sigma_x2 = ((pred - x) * (pred - x)).sum() / (N - 1 + 1e-20) sigma_y2 = ((gt - y) * (gt - y)).sum() / (N - 1 + 1e-20) sigma_xy = ((pred - x) * (gt - y)).sum() / (N - 1 + 1e-20) aplha = 4 * x * y * sigma_xy beta = (x * x + y * y) * (sigma_x2 + sigma_y2) if aplha != 0: Q = aplha / (beta + 1e-20) elif aplha == 0 and beta == 0: Q = 1.0 else: Q = 0 return Q def _eval_e(y_pred, y, num): score = torch.zeros(num) thlist = torch.linspace(0, 1 - 1e-10, num) for i in range(num): y_pred_th = (y_pred >= thlist[i]).float() fm = y_pred_th - y_pred_th.mean() gt = y - y.mean() align_matrix = 2 * gt * fm / (gt * gt + fm * fm + 1e-20) enhanced = ((align_matrix + 1) * (align_matrix + 1)) / 4 score[i] = torch.sum(enhanced) / (y.numel() - 1 + 1e-20) return score def calc_Semantic_Segmentation(y_pred,y_true): batchsize = y_true.shape[0] with torch.no_grad(): assert y_pred.shape == y_true.shape f1, auc = 0, 0 y_true = y_true.cpu().numpy() y_pred = y_pred.cpu().numpy() for i in range(batchsize): true = y_true[i].flatten() true = true.astype(np.int) pred = y_pred[i].flatten() precision, recall, thresholds = precision_recall_curve(true, pred) # auc auc += roc_auc_score(true, pred) # auc += roc_auc_score(np.array(true>0).astype(np.int), pred) f1 += max([(2 * p * r) / (p + r+1e-10) for p, r in zip(precision, recall)]) return f1/batchsize, auc/batchsize, np.array(0), np.array(0)