AI-Journey2 commited on
Commit
d702758
1 Parent(s): 95b0926

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +312 -131
app.py CHANGED
@@ -1,146 +1,327 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
- import torch
 
 
 
 
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
22
 
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
- return image
39
-
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
-
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  }
51
  """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
  with gr.Blocks(css=css) as demo:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
-
66
- with gr.Row():
67
-
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
 
78
- result = gr.Image(label="Result", show_label=False)
79
-
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
  with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
  with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
 
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
-
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
- )
145
-
146
- demo.queue().launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import requests
3
+ import time
4
+ import json
5
+ import base64
6
+ import os
7
+ from io import BytesIO
8
+ import html
9
+ import re
10
 
 
11
 
 
 
 
 
 
 
 
 
12
 
13
+ class Prodia:
14
+ def __init__(self, api_key, base=None):
15
+ self.base = base or "https://api.prodia.com/v1"
16
+ self.headers = {
17
+ "X-Prodia-Key": api_key
18
+ }
19
+
20
+ def generate(self, params):
21
+ response = self._post(f"{self.base}/sd/generate", params)
22
+ return response.json()
23
+
24
+ def transform(self, params):
25
+ response = self._post(f"{self.base}/sd/transform", params)
26
+ return response.json()
27
+
28
+ def controlnet(self, params):
29
+ response = self._post(f"{self.base}/sd/controlnet", params)
30
+ return response.json()
31
+
32
+ def get_job(self, job_id):
33
+ response = self._get(f"{self.base}/job/{job_id}")
34
+ return response.json()
35
 
36
+ def wait(self, job):
37
+ job_result = job
38
 
39
+ while job_result['status'] not in ['succeeded', 'failed']:
40
+ time.sleep(0.25)
41
+ job_result = self.get_job(job['job'])
42
+
43
+ return job_result
44
+
45
+ def list_models(self):
46
+ response = self._get(f"{self.base}/sd/models")
47
+ return response.json()
48
+
49
+ def list_samplers(self):
50
+ response = self._get(f"{self.base}/sd/samplers")
51
+ return response.json()
52
+
53
+ def _post(self, url, params):
54
+ headers = {
55
+ **self.headers,
56
+ "Content-Type": "application/json"
57
+ }
58
+ response = requests.post(url, headers=headers, data=json.dumps(params))
59
+
60
+ if response.status_code != 200:
61
+ raise Exception(f"Bad Prodia Response: {response.status_code}")
62
+
63
+ return response
64
+
65
+ def _get(self, url):
66
+ response = requests.get(url, headers=self.headers)
67
+
68
+ if response.status_code != 200:
69
+ raise Exception(f"Bad Prodia Response: {response.status_code}")
70
+
71
+ return response
72
+
73
+
74
+ def image_to_base64(image):
75
+ # Convert the image to bytes
76
+ buffered = BytesIO()
77
+ image.save(buffered, format="PNG") # You can change format to PNG if needed
78
+
79
+ # Encode the bytes to base64
80
+ img_str = base64.b64encode(buffered.getvalue())
81
+
82
+ return img_str.decode('utf-8') # Convert bytes to string
83
+
84
+
85
+ def remove_id_and_ext(text):
86
+ text = re.sub(r'\[.*\]$', '', text)
87
+ extension = text[-12:].strip()
88
+ if extension == "safetensors":
89
+ text = text[:-13]
90
+ elif extension == "ckpt":
91
+ text = text[:-4]
92
+ return text
93
+
94
+
95
+ def get_data(text):
96
+ results = {}
97
+ patterns = {
98
+ 'prompt': r'(.*)',
99
+ 'negative_prompt': r'Negative prompt: (.*)',
100
+ 'steps': r'Steps: (\d+),',
101
+ 'seed': r'Seed: (\d+),',
102
+ 'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
103
+ 'model': r'Model:\s*([^\s,]+)',
104
+ 'cfg_scale': r'CFG scale:\s*([\d\.]+)',
105
+ 'size': r'Size:\s*([0-9]+x[0-9]+)'
106
+ }
107
+ for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
108
+ match = re.search(patterns[key], text)
109
+ if match:
110
+ results[key] = match.group(1)
111
+ else:
112
+ results[key] = None
113
+ if results['size'] is not None:
114
+ w, h = results['size'].split("x")
115
+ results['w'] = w
116
+ results['h'] = h
117
+ else:
118
+ results['w'] = None
119
+ results['h'] = None
120
+ return results
121
+
122
+
123
+ def send_to_txt2img(image):
124
+
125
+ result = {tabs: gr.update(selected="t2i")}
126
+
127
+ try:
128
+ text = image.info['parameters']
129
+ data = get_data(text)
130
+ result[prompt] = gr.update(value=data['prompt'])
131
+ result[negative_prompt] = gr.update(value=data['negative_prompt']) if data['negative_prompt'] is not None else gr.update()
132
+ result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
133
+ result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
134
+ result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
135
+ result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update()
136
+ result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update()
137
+ result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update()
138
+ if model in model_names:
139
+ result[model] = gr.update(value=model_names[model])
140
+ else:
141
+ result[model] = gr.update()
142
+ return result
143
+
144
+ except Exception as e:
145
+ print(e)
146
+
147
+ return result
148
+
149
+
150
+ prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
151
+ model_list = prodia_client.list_models()
152
+ model_names = {}
153
+
154
+ for model_name in model_list:
155
+ name_without_ext = remove_id_and_ext(model_name)
156
+ model_names[name_without_ext] = model_name
157
+
158
+
159
+ def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
160
+ result = prodia_client.generate({
161
+ "prompt": prompt,
162
+ "negative_prompt": negative_prompt,
163
+ "model": model,
164
+ "steps": steps,
165
+ "sampler": sampler,
166
+ "cfg_scale": cfg_scale,
167
+ "width": width,
168
+ "height": height,
169
+ "seed": seed
170
+ })
171
+
172
+ job = prodia_client.wait(result)
173
+
174
+ return job["imageUrl"]
175
+
176
+
177
+ def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
178
+ result = prodia_client.transform({
179
+ "imageData": image_to_base64(input_image),
180
+ "denoising_strength": denoising,
181
+ "prompt": prompt,
182
+ "negative_prompt": negative_prompt,
183
+ "model": model,
184
+ "steps": steps,
185
+ "sampler": sampler,
186
+ "cfg_scale": cfg_scale,
187
+ "width": width,
188
+ "height": height,
189
+ "seed": seed
190
+ })
191
+
192
+ job = prodia_client.wait(result)
193
+
194
+ return job["imageUrl"]
195
+
196
+
197
+ css = """
198
+ #generate {
199
+ height: 100%;
200
  }
201
  """
202
 
 
 
 
 
 
203
  with gr.Blocks(css=css) as demo:
204
+ with gr.Row():
205
+ with gr.Column(scale=6):
206
+ model = gr.Dropdown(interactive=True,value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())
207
+
208
+ with gr.Column(scale=1):
209
+ gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI.<br>Powered by [Prodia](https://prodia.com).<br>For more features and faster generation times check out our [API Docs](https://docs.prodia.com/reference/getting-started-guide).")
210
+
211
+ with gr.Tabs() as tabs:
212
+ with gr.Tab("txt2img", id='t2i'):
213
+ with gr.Row():
214
+ with gr.Column(scale=6, min_width=600):
215
+ prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3)
216
+ negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
217
+ with gr.Column():
218
+ text_button = gr.Button("Generate", variant='primary', elem_id="generate")
219
+
220
+ with gr.Row():
221
+ with gr.Column(scale=3):
222
+ with gr.Tab("Generation"):
223
+ with gr.Row():
224
+ with gr.Column(scale=1):
225
+ sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
226
+
227
+ with gr.Column(scale=1):
228
+ steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
229
 
230
+ with gr.Row():
231
+ with gr.Column(scale=1):
232
+ width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
233
+ height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
234
+
235
+ with gr.Column(scale=1):
236
+ batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
237
+ batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
238
+
239
+ cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
240
+ seed = gr.Number(label="Seed", value=-1)
241
+
242
+ with gr.Column(scale=2):
243
+ image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
244
+
245
+ text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height,
246
+ seed], outputs=image_output, concurrency_limit=64)
247
 
248
+ with gr.Tab("img2img", id='i2i'):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249
  with gr.Row():
250
+ with gr.Column(scale=6, min_width=600):
251
+ i2i_prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3)
252
+ i2i_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
253
+ with gr.Column():
254
+ i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate")
255
+
 
 
 
 
 
 
 
 
 
 
 
256
  with gr.Row():
257
+ with gr.Column(scale=3):
258
+ with gr.Tab("Generation"):
259
+ i2i_image_input = gr.Image(type="pil")
260
+
261
+ with gr.Row():
262
+ with gr.Column(scale=1):
263
+ i2i_sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
264
+
265
+ with gr.Column(scale=1):
266
+ i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
267
+
268
+ with gr.Row():
269
+ with gr.Column(scale=1):
270
+ i2i_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
271
+ i2i_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
272
+
273
+ with gr.Column(scale=1):
274
+ i2i_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
275
+ i2i_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
276
+
277
+ i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
278
+ i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1)
279
+ i2i_seed = gr.Number(label="Seed", value=-1)
280
+
281
+ with gr.Column(scale=2):
282
+ i2i_image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
283
+
284
+ i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt,
285
+ model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height,
286
+ i2i_seed], outputs=i2i_image_output, concurrency_limit=64)
287
 
288
+ with gr.Tab("PNG Info"):
289
+ def plaintext_to_html(text, classname=None):
290
+ content = "<br>\n".join(html.escape(x) for x in text.split('\n'))
291
+
292
+ return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>"
293
+
294
+
295
+ def get_exif_data(image):
296
+ items = image.info
297
+
298
+ info = ''
299
+ for key, text in items.items():
300
+ info += f"""
301
+ <div>
302
+ <p><b>{plaintext_to_html(str(key))}</b></p>
303
+ <p>{plaintext_to_html(str(text))}</p>
304
+ </div>
305
+ """.strip()+"\n"
306
+
307
+ if len(info) == 0:
308
+ message = "Nothing found in the image."
309
+ info = f"<div><p>{message}<p></div>"
310
+
311
+ return info
312
+
313
+ with gr.Row():
314
+ with gr.Column():
315
+ image_input = gr.Image(type="pil")
316
+
317
+ with gr.Column():
318
+ exif_output = gr.HTML(label="EXIF Data")
319
+ send_to_txt2img_btn = gr.Button("Send to txt2img")
320
+
321
+ image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output)
322
+ send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input], outputs=[tabs, prompt, negative_prompt,
323
+ steps, seed, model, sampler,
324
+ width, height, cfg_scale],
325
+ concurrency_limit=64)
326
+
327
+ demo.queue(max_size=80, api_open=False).launch(max_threads=256, show_api=False)