import gradio as gr import cv2 import requests import os import torch import numpy as np from ultralytics import YOLO model = torch.hub.load('ultralytics/yolov5', 'yolov5x', pretrained=True) path = [['image_0.jpg'], ['image_1.jpg']] video_path = [['TresPass_Detection_1.mp4']] # area = [(215, 180), (110, 75), (370, 55), (520, 140), (215, 180) ] # area = [(190, 180), (100, 75), (360, 55), (510, 140), (190, 180) ] area = [(215, 180), (110, 80), (360, 55), (510, 140), (215, 180) ] # def show_preds_video(video_path): def show_preds_video(): cap = cv2.VideoCapture('TresPass_Detection_1.mp4') count=0 while(cap.isOpened()): ret, frame = cap.read() if not ret: break count += 1 if count % 10 != 0: continue # frame = cv2.imread(video_path) frame=cv2.resize(frame,(1020,600)) frame_copy = frame.copy() cv2.polylines(frame_copy, [np.array(area, np.int32)], True, (0,255,0), 2) results=model(frame) for index, row in results.pandas().xyxy[0].iterrows(): x1 = int(row['xmin']) y1 = int(row['ymin']) x2 = int(row['xmax']) y2 = int(row['ymax']) d=(row['name']) cx=int(x1+x2)//2 cy=int(y1+y2)//2 if ('person') in d: results = cv2.pointPolygonTest(np.array(area, np.int32), ((cx,cy)), False) # results = cv2.pointPolygonTest(np.array(area, np.int32), ((x2,y1)), False) # results = cv2.pointPolygonTest(np.array(area, np.int32), ((x2,y2)), False) if results >0: cv2.rectangle(frame_copy,(x1,y1),(x2,y2),(0,0,255),2) cv2.putText(frame_copy,str(d),(x1,y1),cv2.FONT_HERSHEY_SIMPLEX,1,(0,0,255),1) cv2.putText(frame_copy,str("Alert !!! Trespasser detected !!!"),(50,300),cv2.FONT_HERSHEY_PLAIN,2,(0,0,255),3) yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) inputs_video = [ #gr.components.Video(type="filepath", label="Input Video", visible =False), ] outputs_video = [ gr.components.Image(type="numpy", label="Output Image"), ] interface_video = gr.Interface( fn=show_preds_video, inputs=inputs_video, outputs=outputs_video, title="Security - Trespasser monitoring ", examples=video_path, cache_examples=False, ) gr.TabbedInterface( [interface_video], # [interface_image, interface_video], tab_names=['Video inference'] ).queue().launch()