Ivy-VL / app.py
Ivy1997's picture
Update app.py
408282e verified
import gradio as gr
from llava.model.builder import load_pretrained_model
from llava.mm_utils import process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from llava.conversation import conv_templates
from PIL import Image
import copy
import torch
import warnings
warnings.filterwarnings("ignore")
pretrained = "AI-Safeguard/Ivy-VL-llava"
model_name = "llava_qwen"
device = "cpu"
device_map = "auto"
# Load model, tokenizer, and image processor
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map, attn_implementation="sdpa")
model.eval()
def respond(image, question, temperature, max_tokens):
try:
# Load and process the image
image_tensor = process_images([image], image_processor, model.config)
image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor]
# Prepare the conversation template
conv_template = "qwen_1_5"
formatted_question = DEFAULT_IMAGE_TOKEN + "\n" + question
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], formatted_question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
# Tokenize input
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
image_sizes = [image.size]
# Generate response
cont = model.generate(
input_ids,
images=image_tensor,
image_sizes=image_sizes,
do_sample=False,
temperature=temperature,
max_new_tokens=max_tokens,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
return text_outputs[0]
except Exception as e:
return f"Error: {str(e)}"
# Gradio Interface
def chat_interface(image, question, temperature, max_tokens):
if not image or not question:
return "Please provide both an image and a question."
return respond(image, question, temperature, max_tokens)
demo = gr.Interface(
fn=chat_interface,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Textbox(label="Question"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max Tokens"),
],
outputs="text",
title="AI-Safeguard Ivy-VL-Llava Image Question Answering",
description="Upload an image and ask a question about it. The model will provide a response based on the visual and textual input."
)
if __name__ == "__main__":
demo.launch()