Spaces:
Running
Running
import gradio as gr | |
from llava.model.builder import load_pretrained_model | |
from llava.mm_utils import process_images, tokenizer_image_token | |
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN | |
from llava.conversation import conv_templates | |
from PIL import Image | |
import copy | |
import torch | |
import warnings | |
warnings.filterwarnings("ignore") | |
pretrained = "AI-Safeguard/Ivy-VL-llava" | |
model_name = "llava_qwen" | |
device = "cpu" | |
device_map = "auto" | |
# Load model, tokenizer, and image processor | |
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map, attn_implementation="sdpa") | |
model.eval() | |
def respond(image, question, temperature, max_tokens): | |
try: | |
# Load and process the image | |
image_tensor = process_images([image], image_processor, model.config) | |
image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor] | |
# Prepare the conversation template | |
conv_template = "qwen_1_5" | |
formatted_question = DEFAULT_IMAGE_TOKEN + "\n" + question | |
conv = copy.deepcopy(conv_templates[conv_template]) | |
conv.append_message(conv.roles[0], formatted_question) | |
conv.append_message(conv.roles[1], None) | |
prompt_question = conv.get_prompt() | |
# Tokenize input | |
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) | |
image_sizes = [image.size] | |
# Generate response | |
cont = model.generate( | |
input_ids, | |
images=image_tensor, | |
image_sizes=image_sizes, | |
do_sample=False, | |
temperature=temperature, | |
max_new_tokens=max_tokens, | |
) | |
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True) | |
return text_outputs[0] | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Gradio Interface | |
def chat_interface(image, question, temperature, max_tokens): | |
if not image or not question: | |
return "Please provide both an image and a question." | |
return respond(image, question, temperature, max_tokens) | |
demo = gr.Interface( | |
fn=chat_interface, | |
inputs=[ | |
gr.Image(type="pil", label="Input Image"), | |
gr.Textbox(label="Question"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max Tokens"), | |
], | |
outputs="text", | |
title="AI-Safeguard Ivy-VL-Llava Image Question Answering", | |
description="Upload an image and ask a question about it. The model will provide a response based on the visual and textual input." | |
) | |
if __name__ == "__main__": | |
demo.launch() | |