import gradio as gr from llava.model.builder import load_pretrained_model from llava.mm_utils import process_images, tokenizer_image_token from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN from llava.conversation import conv_templates from PIL import Image import copy import torch import warnings warnings.filterwarnings("ignore") pretrained = "AI-Safeguard/Ivy-VL-llava" model_name = "llava_qwen" device = "cpu" device_map = "auto" # Load model, tokenizer, and image processor tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map, attn_implementation="sdpa") model.eval() def respond(image, question, temperature, max_tokens): try: # Load and process the image image_tensor = process_images([image], image_processor, model.config) image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor] # Prepare the conversation template conv_template = "qwen_1_5" formatted_question = DEFAULT_IMAGE_TOKEN + "\n" + question conv = copy.deepcopy(conv_templates[conv_template]) conv.append_message(conv.roles[0], formatted_question) conv.append_message(conv.roles[1], None) prompt_question = conv.get_prompt() # Tokenize input input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) image_sizes = [image.size] # Generate response cont = model.generate( input_ids, images=image_tensor, image_sizes=image_sizes, do_sample=False, temperature=temperature, max_new_tokens=max_tokens, ) text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True) return text_outputs[0] except Exception as e: return f"Error: {str(e)}" # Gradio Interface def chat_interface(image, question, temperature, max_tokens): if not image or not question: return "Please provide both an image and a question." return respond(image, question, temperature, max_tokens) demo = gr.Interface( fn=chat_interface, inputs=[ gr.Image(type="pil", label="Input Image"), gr.Textbox(label="Question"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max Tokens"), ], outputs="text", title="AI-Safeguard Ivy-VL-Llava Image Question Answering", description="Upload an image and ask a question about it. The model will provide a response based on the visual and textual input." ) if __name__ == "__main__": demo.launch()