Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,464 Bytes
2a5f9fb df66f6e 2a5f9fb df66f6e 6e56e0d df66f6e 6e56e0d 7302987 6e56e0d 9833cdb 6e56e0d 7302987 9833cdb 6e56e0d 3dfaf22 7302987 ec110e2 7302987 ec110e2 7302987 3dfaf22 6e56e0d 3dfaf22 6e56e0d 7302987 ec110e2 6e56e0d 2a5f9fb 9833cdb 2a5f9fb 9833cdb 2a5f9fb fc1e99b 9833cdb fc1e99b 2a5f9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
import json
import os
import re
from collections import defaultdict
from datetime import datetime, timedelta, timezone
import huggingface_hub
from huggingface_hub import ModelCard
from huggingface_hub.hf_api import ModelInfo
from transformers import AutoConfig
from transformers.models.auto.tokenization_auto import tokenizer_class_from_name, get_tokenizer_config
def check_model_card(repo_id: str) -> tuple[bool, str]:
"""Checks if the model card and license exist and have been filled"""
try:
card = ModelCard.load(repo_id)
except huggingface_hub.utils.EntryNotFoundError:
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
# Enforce license metadata
if card.data.license is None:
if not ("license_name" in card.data and "license_link" in card.data):
return False, (
"License not found. Please add a license to your model card using the `license` metadata or a"
" `license_name`/`license_link` pair."
)
# Enforce card content
if len(card.text) < 200:
return False, "Please add a description to your model card, it is too short."
return True, ""
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
"""Makes sure the model is on the hub, and uses a valid configuration (in the latest transformers version)"""
try:
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
if test_tokenizer:
tokenizer_config = get_tokenizer_config(model_name)
if tokenizer_config is not None:
tokenizer_class_candidate = tokenizer_config.get("tokenizer_class", None)
else:
tokenizer_class_candidate = config.tokenizer_class
if tokenizer_class_candidate:
tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
else:
tokenizer_class = None
if tokenizer_class is None:
return (
False,
f"uses '{tokenizer_class_candidate}' tokenizer class, which is not supported at the moment.",
None
)
return True, None, config
except ValueError:
return (
False,
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
None
)
except Exception as e:
return False, f" is not found on the hub (error: {e})", None
def get_model_size(model_info: ModelInfo, precision: str):
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
try:
model_size = round(model_info.safetensors["total"] / 1e9, 3)
except (AttributeError, TypeError):
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
model_size = size_factor * model_size
return model_size
def get_model_arch(model_info: ModelInfo):
"""Gets the model architecture from the configuration"""
return model_info.config.get("architectures", "Unknown")
def already_submitted_models(requested_models_dir: str) -> set[str]:
depth = 1
file_names = []
users_to_submission_dates = defaultdict(list)
for root, _, files in os.walk(requested_models_dir):
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
if current_depth == depth:
for file in files:
if not file.endswith(".json"):
continue
with open(os.path.join(root, file), "r") as f:
info = json.load(f)
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
# Select organisation
if info["model"].count("/") == 0 or "submitted_time" not in info:
continue
organisation, _ = info["model"].split("/")
users_to_submission_dates[organisation].append(info["submitted_time"])
return set(file_names), users_to_submission_dates
|